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Abstract In this work a numerical iterative method 
for solving the nonlinear Poisson equation has been 
developed with the use of the diffusion-equation 
(parabolic) finite difference schema, to describe 
semiconductor hetero-structures. Procedures to 
control the convergence and  stability of the 
method are presented. The approach enables us to 
solve the nonlinear Poisson equation in a small 
number of iterations, regardless of the level of 
hetero-structure complexity, type of electrical 
contacts and passive dielectric layers. Some 
numerical results obtained by this method for nBn             
Hg1-xCdxTe hetero-structure infrared detectors 
with metal contacts are reported. 

I INTRODUCTION 

     The numerical modelling of semiconductor devices 
is usually based on four coupled differential 
equations: the Poisson equation, electron and hole 
balance equations (called current continuity equations) 
and energy balance equation. All these four equations 
are non-linear. The Poisson equation can be solved 
separately in the case of thermal equilibrium, which is 
the first step to consider the non-equilibrium 
phenomena. A stable numerical procedure for 
approximate solving it is needed. An approach 
commonly used is based on applying Newton’s 
method for the discretised  equation. Two features of 
the numerical method are then especially important: 
the suitable choice of initial values of electrical 
potential and the stability of iterative algorithms. In 
[1] A. Jóźwikowska has proposed an iterative 
numerical method for solving the nonlinear Poisson 
equation for semiconductor devices with the 
application of the diffusion-equation finite difference 
schema. In this method the non-linear Poisson 
equation was replaced by an equivalent diffusion 
equation which was solved to achieve a stationary 
state approximately. The method was pretty stable and 
applicable regardless of the level of hetero-structure 
complexity, type of electrical contacts and passive 
dielectric layers. Stability conditions were not defined 
precisely. In this paper we have improved this method 
by adding a heuristic approach to obtain the optimal 
values of pseudo-time step. This allows for the 
significant reduction of the number of iterations, 

increasing the efficiency of the method. The Poisson 
equation can be represented in the following form: ߝሺߖߝሻ  ߩ݁ ൌ 0,			ሺ1ሻ	                             
where ߩሺߖሻ ൌ ሻߖሺ െ ݊ሺߖሻ  ܰାሺߖሻ െ ܰି ሺߖሻ  is 
the electric charge density equal to the difference 
between the densities of positive and negative charge 
carriers (hole concentration plus concentration of 
ionized donors minus electron concentration and 
minus concentration of ionized acceptors);   is the 
Hamilton differential operator. Eq. (1) is nonlinear due 
to the nonlinear dependence of the charge density on 
the potential. A method for finding the potential ߖ 
from Eq. (1) with boundary conditions, used in this 
work, relies on substituting (1) for diffusion 
(parabolic) equation డఅడ௧ ൌ ሻߖߝሺߝ  ሺ2ሻ					,ߩ݁                             

with pseudo-time (dimensionless) variable t added. 
Given boundary conditions fixed and an initial guess 

for ߖ, Eq. (2) is solved until 
డఅడ௧ ൌ 0 (approximately). 

In this way the process of solving (2) can be 
interpreted as the transition from the initial (non-
equilibrium) electrostatic potential distribution to a 
stationary state enforced by boundary condition. The 
computations are performed with a discrete 
approximation of Eq. (2). The construction of 
corresponding finite difference schema is explained in 
this paper in detail for an infrared detector structure. 
As an example, let us consider mesa cylindrical 
structure of HgCdTe nBn infrared detector presented 
in Fig. 1. The device consists of a four-layer (n+-B-n-
N+) structure deposited on the CdTe buffer layer . 

 

Fig. 1. The cross-section of HgCdTe mesa structure.  
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II COMPUTATION METHOD 

 

 

Fig. 2. Definition of two-dimensional finite difference mesh. The coloured 
area states for half axial cross-section of the device from figure 1. The 
analyzed structure is divided into rings with rectangular cross sections ܦ∗ܥ∗ܤ∗ܣ∗  around each mesh point in the centre. The values of electrical 
potential are to be computed in central points. The rings are divided into three 
classes with respect to a number of faces being parts of external faces of the 
device: none (A), one (B) or two (C).  

     To construct the numerical method and perform 
computations the device shown in Fig. 1 (axially symmetric 
cylindrical) are divided into toroidal rings with rectangular 
cross sections defining the mesh for two-dimensional finite 
difference schema (Fig. 2) in the axial cross section of the 
analysed structure. The rings are considered in semiconductor 
domains as well as in metallic contacts and dielectric layers 
(Ref. [1]). The rings can be divided into three different classes 
with respect to a number of faces being parts of external faces 
of the device (Fig. 2): none (A), one (B) or two (C). We have 
obtained the numerical equation  

 
అశభሺ,ሻିఅಽಲሺ,ሻ∆௧ ൌ                                      ሺ3ሻ			ሻߖሺܮ

which approximately substitutes Eq. (2), with finite-difference 
operator ܮሺߖሻൌ ܣ ,ሺ݇ߝ ݈ െ 1ሻߚሺ݈ሻߝሺ݇, ݈ െ 1ሻߚሺ݈ሻ  ,ሺ݇ߝ ݈ሻߚሺ݈ െ 1ሻ ሾߖሺ݇, ݈ െ 1ሻെ ,ሺ݇ߖ ݈ሻሿ ܤ ,ሺ݇ߝ ݈  1ሻߚሺ݈ሻߝሺ݇, ݈  1ሻߚሺ݈ሻ  ,ሺ݇ߝ ݈ሻߚሺ݈  1ሻ ሾߖሺ݇, ݈  1ሻെ ,ሺ݇ߖ ݈ሻሿ ܥ ሺ݇ߝ  1, ݈ሻߛሺ݇ሻߝሺ݇  1, ݈ሻߛሺ݇ሻ  ,ሺ݇ߝ ݈ሻߛሺ݇  1ሻ ሾߖሺ݇  1, ݈ሻെ ,ሺ݇ߖ ݈ሻሿ ܥ ሺ݇ߝ െ 1, ݈ሻߛሺ݇ሻߝሺ݇ െ 1, ݈ሻߛሺ݇ሻ  ,ሺ݇ߝ ݈ሻߛሺ݇ െ 1ሻ ሾߖሺ݇ െ 1, ݈ሻെ ,ሺ݇ߖ ݈ሻሿ ݁ሼሺ݇, ݈ሻ െ ݊ሺ݇, ݈ሻ  ܰାሺ݇, ݈ሻെ ܰି ሺ݇, ݈ሻሽ																																																				ሺ4ሻ ܴሺ݈ሻ is the mean radius of considered toroidal ring 

A ൌ ሾோሺሻି.ହఉሺሻሿఌబఌሺ,ሻோሺሻሾఉሺሻሿమ ܤ    , ൌ ሾோሺሻା.ହఉሺሻሿఌబఌሺ,ሻோሺሻሾఉሺሻሿమ ܥ  , ൌఌబఌሺ,ሻሾఊሺሻሿమ 	 . ሺ݈ߚ	  1ሻ  ሺ݈ሻߚ ൌ ሺ݈ݕ݀  1ሻ ሺ݇ߛ ,  1ሻ  ሺ݇ሻߛ ൌ݀ݖሺ݇  1ሻ ሺ݇ߛ , െ 1ሻ  ሺ݇ሻߛ ൌ ሺ݇ሻݖ݀ , and ߖሺ݇, ݈ሻ ൌଵସ ሺߖଵ  ଶߖ  ଷߖ  	,ସሻߖ where ଵߖ               ൌ అሺ,ିଵሻఌሺ,ିଵሻఉሺሻାఅሺ,ሻఌሺ,ሻఉሺିଵሻఌሺ,ିଵሻఉሺሻାఌሺ,ሻఉሺିଵሻ .             

ଶߖ  ൌ అሺ,ାଵሻఌሺ,ାଵሻఉሺሻାఅሺ,ሻఌሺ,ሻఉሺାଵሻఌሺ,ାଵሻఉሺሻାఌሺ,ሻఉሺାଵሻ ଷߖ                                                          ൌ అሺାଵ,ሻఌሺାଵ,ሻఊሺሻାఅሺ,ሻఌሺ,ሻఊሺାଵሻఌሺାଵ,ሻఊሺሻାఌሺ,ሻఊሺାଵሻ , 

ସߖ ൌ అሺିଵ,ሻఌሺିଵ,ሻఊሺሻାఅሺ,ሻఌሺ,ሻఊሺିଵሻఌሺିଵ,ሻఊሺሻାఌሺ,ሻఊሺିଵሻ ,  

 

 

Fig. 3. Theoretical 
assumption of 
composition and 
dopant profiles along A-
A’ cross section (Fig. 1) 
of LWIR HgCdTe nBn 
detector. 

 

 

Fig.4. . Calculated energy 
band diagram along A-A’ 
cross section (Fig. 1) of 
LWIR HgCdTe nBn 
detector with a zero 
valence band offset. 
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