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Abstract—We present a mathematical framework and numer-
ical simulations for the optimal doping design for optoelectronic
devices using methods from mathematical optimization. With the
goal to maximize light emission from an edge-emitting laser,
we consider a model for semiconductor charge transport and
include optical gain and losses into the cost functional for the
optimization of its 2D cross sections. We present 1D and 2D
results for exemplary setups that point out possible routes for
device improvement.

I. INTRODUCTION

Silicon photonics has a high potential for novel solutions in
microelectronics, e.g., for high-speed data transfer via optical
on-chip communication or for bio-sensing. In this regard,
the engineering of mechanical strains or of electronic doping
provides feasible ways to enhance optoelectronic properties
of semiconductor lasers in a desired direction. In the past,
there have been several studies investigating the optimization
of electronic transport in semiconductor devices with optimal
control methods, e.g., [1] and [2]. It is our goal to extend
these mathematical methods systematically to optoelectronic
devices.

It was shown that using a combination of tensile strain
and high n-doping can transform germanium into a suit-
able optically active medium for an edge-emitting laser [3].
Additional design features, such as focussing the electron
currents through an aperature, can still significantly lower
lasing thresholds [4]. Motivated by this potential for further
improvement, we study the problem of finding an optimal
doping profile c : Ω ⊂ Rd → R where d ∈ {1, 2}, aiming at
enhanced laser light emission, cf. Fig. 1.

Figure 1: Sketch of a contacted edge-emitter, where the doping profile c(x)
in the optically active region is to be optimized.

II. MATHEMATICAL MODEL AND DOPING OPTIMIZATION

We seek the electrostatic potential ψ(x), the electron and
the hole densities n(x), p(x), and the photon number γ, such

that

0 = −∇ · (εr∇ψ)− (c+ p− n), (1a)
0 = ṅ−∇ · jn +Rnr +Rrad, (1b)
0 = ṗ+∇ · jp +Rnr +Rrad, (1c)

0 = γ̇ − 1

|Ω|

∫
Ω

(Rrad − Λ|Θ|2), (1d)

with charge fluxes jn = −µnn∇φn and jp = −µpp∇φp,
non-radiative and radiative recombination rates Rnr and
Rrad, and extra losses Λ. Here, the quasi-Fermi potentials
φn, φp are defined implicitly by the equation of state n =

NcF
(Ev−q(ψ−φp)

kBT

)
and p = NvF

( q(ψ−φn)−Ec

kBT

)
. Then, the

standard drift-diffusion formulation is obtained by using Boltz-
mann statistics, i.e., F (s) = e−s. The model (1) is motivated
by a publication of Gajewski et al. [5], for which we showed
in [6] that it has a particular variational structure. The model
(1) is supplemented with boundary conditions jn ·n = jp ·n =
n · ∇ψ = 0 on ΓN ⊂ ∂Ω and Dirichlet conditions at standard
Ohmic contacts ΓD.

The recombination rates in the model are of general the
form Rnr = R

(
np − n2

i

)
and contain contributions from

spontaneous, Shockley-Read-Hall, and Auger recombination.
The photon number γ in (1d) corresponds to an optical mode
with frequency ω, which solves the Helmholtz equation[

∆ + ω2

c2 εopt − ξ2
]

Θ = 0, (2)

with εopt = (nr + i c2ω g)2. The radiative recombination Rrad
can be written in terms of Θ and the imaginary part of ξ. Using
a perturbation argument allows us to consider the radiative
recombination a function Rrad ∼ g|Θ|2, where g = g(n, p, γ)
and Θ depends only implicitly on the doping profile c.

In order to find the optimal doping copt, we write the solu-
tions of (1) in the compact form u = (ψ, n, p, γ). We are inter-
ested in low (treshold) currents QJ through contacts Γc ⊂ ΓD
and high modal gain QR, where QJ(u) =

∫
Γc
|jn+jp|2 ·n and

QR(u) =
∫

Ω
(−Rrad + Λ|Θ|2). This results in the constrained

optimization problem

min
c,u s.t. (1)

(
αJ QJ(u) + αRQR(u) + β ρ(c)

)
, (3)

with suitable regularization ρ(c), e.g., ρ(c) = ‖∇(c− c0)‖2L2 ,
to guarantee existence of a minimizer copt. Below lasing
threshold and due to the specific form of Rrad it is sufficient to
consider (1a-c) with Rrad a function of n, p, where the photon
number can be effectively absorbed into the coefficient α, and
Θ is a given function.
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III. NUMERICAL METHOD AND DISCUSSION OF RESULTS

The numerical solution of the stationary solution of (1) re-
lies on a finite element method, where we seek the electrostatic
potential and the quasi-Fermi potentials (ψ, φn, φp), such that∫

εr∇ψ · ∇w1 =

∫
(c+ p− n)w1,∫

µnn∇φn · ∇w2 = +

∫
(Rnr +Rrad)w2,∫

µpp∇φp · ∇w3 = −
∫

(Rnr +Rrad)w3,

holds for all test functions (w1, w2, w3). The densities n, p
depend explicitly on the potentials via the before mentioned
equation of state. For the doping optimization we apply a
Newton scheme to the first order conditions of the constrained
optimization problem (3). The function copt depends on the
choice of ρ, γ, β. However, this ambiguity can be partially
resolved by studying the limit β → 0. Such an approach to
device optimization is advantageous due to its fast conver-
gence, which typically does not depend on the discretization.
Here we present some results obtained for dimensions d = 1
and d = 2. The used gain model is motivated by [4] and [7],
the numerical values have a reasonable order of magnitude
but do not attempt to resemble any specific material or device
setting. For the result in d = 1 in the domain Ω = [0, 1]µm
with reference doping N0 = 1019cm−3 and applied voltage
0.4V and Eg = 0.24V .
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Figure 2: (left) optimal doping and electron/hole densities with αR = 1,
αJ = 0 and (right) or alternatively with αR = 1, αJ = 1/5 and β = 10−5

In Fig. 2 we show the optimal doping concentrations for d = 1
with different values of αR, αJ . We observe a converging
doping profile where the optical mode |Θ|2 is supported as
β → 0. Where the optical mode is small for αJ = 0,
the doping will depend on the choice of the regularization
ρ, β (here β = 10−5). When setting αJ = 1/5 the optimal
doping copt also converges where |Θ|2 is small. Also, using
a combination of QJ and QR as the optimization goal seems
more reasonable. The shape of copt seems to suggest a fairly
low doping with a slight gradient where the optical mode is
located. Interestingly, the slight asymmetry in the free carrier
absorbtion fp = 5fn in the gain model

g = κ
(
e
−~ω
kBT − e

−qUF

kBT

)(
np
N2

0

)γ
, Λ = fnn+ fpp, (4)

with qUF = kBT
(
F−1(n/Nc) + F−1(p/Nv)

)
+ Eg leads

to an asymmetric doping profile, so that for x > 0.8µm the

Figure 3: (left) optimal doping copt without low current goal αR = 1 and
αJ = 0 and (right) electrostatic potential ψ at β = 10−5

doping even decreases towards the Ohmic contact. At the other
contact, for x < 0.2µm the doping is nearly constant. The
simulation result for d = 2 is shown in Fig. 3, where we
have choosen the same physical parameters, except the bias is
0.2V and the geometry with the corresponding optical mode
Θ ∼ sin

(
πx/(2µm)

)
sin
(
πy/(0.5µm)

)
. Near the contacts

for y ≤ 0 or y ≥ 0.5µm the doping is fixed, in all other
places (including contacts) the doping is optimized. For better
visibility, the result in Fig. 3 is shown on a coarse tensor-mesh
with 6 016 vertices and 18 240 unknowns. Similar as for d = 1,
there is only a slight gradient of copt where the optical mode
is supported. Outside this region the behavior of the doping is
again dependent on the regularization. In constrast to low-
dimensional parameter studies, infinite-dimensional doping
optimization provides valueable insights into the achievable
optoelectronic performance. When designing such a toolbox,
much implementation effort goes into computation higher-
order derivatives of the model. However, this requires direct
control over the solver implementation. Further improvement
are viable by model improvement and validation.
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