Comparison of Consistent Flux Discretizations for Drift Diffusion beyond Boltzmann Statistics

Patricio Farrell*[†], Thomas Koprucki*, Jürgen Fuhrmann*

* Weierstrass Institute (WIAS), Mohrenstr. 39, 10117 Berlin, Germany

[†] TU Hamburg-Harburg, Institut für Mathematik, Am Schwarzenberg-Campus 3, 21073 Hamburg, Germany

Email: {patricio.farrell, thomas.koprucki, juergen.fuhrmann}@wias-berlin.de

Abstract—We compare three thermodynamically consistent shall imply Scharfetter-Gummel schemes for non-Boltzmann statistics.

I. INTRODUCTION

The classical Scharfetter-Gummel scheme in combination with a Voronoï finite volume method provides a discrete approximation to drift-diffusion currents for non-degenerate semiconductors which is consistent to the thermodynamic equilibrium in the sense that discrete solutions of the equilibrium nonlinear Poisson problem yield zero current.

Non-Boltzmann distribution functions \mathcal{F} describing degenerate semiconductors are required for the simulation of single photon sources at cryogenic temperatures [1], [2] or organic semiconductors. Based on the analysis performed in [3], this paper compares several possible thermodynamically consistent generalizations of the Scharfetter-Gummel scheme to general strictly monotonously increasing distribution functions.

We consider the stationary van Roosbroeck system of charge transport in semiconductors using standard notation [3] (ψ : electrostatic potential, φ_n, φ_p : quasi-Fermi potentials, η_n, η_p : chemical potentials):

$$-\nabla \cdot \left(\varepsilon_0 \varepsilon_r \nabla \psi\right) = q \left(p - n + C\right), \tag{1a}$$

$$\nabla \cdot \mathbf{j}_n = qR, \qquad \mathbf{j}_n = -q\mu_n n\nabla\varphi_n, \tag{1b}$$

$$\nabla \cdot \mathbf{j}_p = -qR, \qquad \mathbf{j}_p = -q\mu_p p \nabla \varphi_p \tag{1c}$$

where the electron and hole densities are defined by

$$n = N_c \mathcal{F}(\eta_n), \qquad \eta_n = \frac{q(\psi - \varphi_n) - E_c}{k_B T},$$
 (2a)

$$p = N_v \mathcal{F}(\eta_p), \qquad \eta_p = \frac{q(\varphi_p - \psi) + E_v}{k_B T}.$$
 (2b)

In the following we restrict our considerations to the continuity equation for the electrons, partially omitting the index n.

II. DISCRETE THERMODYNAMIC CONSISTENCY

We require our numerical current approximation to satisfy a relationship which holds at the continuous level: constant quasi Fermi potentials lead to vanishing currents. Thus, setting any discrete numerical flux between two adjacent discretization nodes \mathbf{x}_K and \mathbf{x}_L corresponding to neighboring Voronoï cells (see [3] for more details) K and L to zero

$$j = j(\eta_L, \eta_K, \psi_L, \psi_K) = 0$$

$$\frac{\psi_L - \psi_K}{U_T} =: \delta \psi_{KL} = \delta \eta_{KL} := \eta_L - \eta_K.$$
(3)

Thermodynamic consistency helps to avoid unphysical steady state dissipation [8]. Furthermore, the consistent discretization of dissipative effects is crucial when coupling the semiconductor equations to heat transport models.

III. GENERALIZED SCHARFETTER-GUMMEL SCHEMES

If one assumes that the (unknown) flux j between two cells is constant, it fulfills the integral equation, see [4], [5],

$$\int_{\eta_K}^{\eta_L} \left(\frac{j_n/j_0}{\mathcal{F}(\eta)} + \frac{\psi_L - \psi_K}{U_T} \right)^{-1} d\eta = 1, \quad j_0 = q\mu_n N_c \frac{U_T}{h_{KL}}$$
(4)

where the integration limits are given by $\eta_K = \eta_n (\psi_K, \varphi_K)$ and $\eta_L = \eta_n (\psi_L, \varphi_L)$. For strictly monotonously increasing $\mathcal{F}(\eta)$ this equation has always a unique solution [6]. We will refer to it as the *generalized* Scharfetter-Gummel flux.

For the Boltzmann approximation, $\mathcal{F}(\eta) = e^{\eta}$, we obtain from (4) the classical Scharfetter-Gummel scheme [7],

$$j_{\rm SG} = B\left(\delta\psi_{KL}\right)e^{\eta_L} - B\left(-\delta\psi_{KL}\right)e^{\eta_K},\tag{5}$$

for the non-dimensionalized edge current $j_{SG} = j_n/j_0$ and the Bernoulli function $B(x) := x/(e^x - 1)$.

The Blakemore approximation $\mathcal{F}(\eta) = \frac{1}{e^{-\eta} + \gamma}$ yields for (4) a fixed point equation [5].

IV. MODIFIED SCHARFETTER-GUMMEL SCHEMES

For general distribution functions, however, we cannot find closed expressions for the unknown current as a solution to (4). Since solving an integral equation for each pair of neighboring discretization points $\mathbf{x}_K, \mathbf{x}_L$ is too expensive in general, we introduce the following modified schemes as approximate solutions to (4). They keep the beneficial Scharfetter-Gummel structure and are all thermodynamically consistent.

A. Diffusion enhanced Scharfetter-Gummel scheme

In [8], [9], a logarithmic average of the nonlinear diffusion enhancement $g(\eta) = \frac{1}{(\ln \mathcal{F}(\eta))'} = \mathcal{F}(\eta)/\mathcal{F}'(\eta) \ge 1$ given by

$$g_{KL} = \frac{\eta_L - \eta_K}{\log \mathcal{F}(\eta_L) - \log \mathcal{F}(\eta_K)}$$
(6)

NUSOD 2017

Fig. 1. Logarithmic absolute errors between the generalized Scharfetter-Gummel and the diffusion enhanced scheme (left), the arithmetically averaged inverse activity scheme (middle) and the geometrically averaged one (right) for $\bar{\eta}_{KL} = 5$, see [3].

was suggested, leading to the current approximation

$$j_{\text{DE}} = g_{KL} \left[B\left(\frac{\delta\psi_{KL}}{g_{KL}}\right) \mathcal{F}(\eta_L) - B\left(-\frac{\delta\psi_{KL}}{g_{KL}}\right) \mathcal{F}(\eta_K) \right].$$
(7)

B. Inverse activity coefficients

Reformulation of (1b) in terms of activities e^{η_n} leads to a drift-diffusion flux of activities weighted by the inverse $\beta = \mathcal{F}(\eta)/e^{(\eta)}$ of the activity coefficient [10], leading to schemes

$$j_{\rm IA} = -\bar{\beta}_{KL} \left(B \left(-\delta \psi_{KL} \right) e^{\eta_K} - B \left(\delta \psi_{KL} \right) e^{\eta_L} \right), \quad (8)$$

depending on the average $\bar{\beta}_{KL}$ of β_K and β_L . We consider arithmetic and geometric averages.

V. ERROR ESTIMATES AND COMPARISON

Neglecting third-order terms, setting $\bar{\eta}_{KL} = \frac{\eta_L + \eta_K}{2}$, the error between the modified fluxes and the generalized Scharfetter-Gummel flux *j* defined by the exact solution of (4) can be bounded by, see [3],

$$|j_{\rm IA} - j| \le \frac{1}{2} \mathcal{F}(\bar{\eta}_{KL}) |\delta \psi_{KL} \delta \eta_{KL}|, \tag{9}$$

$$|j_{\rm DE} - j| \le \frac{1}{2} \frac{\mathcal{F}(\bar{\eta}_{KL})}{g(\bar{\eta}_{KL})} |\delta\psi_{KL}\delta\eta_{KL}|.$$
(10)

Fig. 1 shows the errors in terms of $\delta\eta_{KL}$ and $\delta\psi_{KL}$ for a fixed average $\bar{\eta}_{KL}$ and the Blakemore approximation. The errors vanish along the dashed lines indicating $\eta_K = \eta_L$ (pure drift current) as well as $\delta \psi_{KL} = \delta \eta_{KL}$ due to the consistency with the thermodynamic equilibrium. The diffusion enhancement $g(\bar{\eta}_{KL} = 5) = 41.07$ indicates that the Boltzmann approximation $(g \equiv 1)$ is not valid. Such an high value of q can appear in devices operating at cryogenic temperatures [2]. Consistent with error estimates (9) and (10), the comparison in Fig. 1 reveals that the error of scheme (7) is considerably smaller than for scheme (8) for potential differences between neighboring cells larger than the thermal voltage U_T . This makes the diffusion enhanced scheme more accurate on coarser meshes. As the mesh becomes finer, we note that $\delta \psi_{KL}$ and $\delta \eta_{KL}$ tend to zero, and flux values close to the origin in Fig. 1 are attained where all schemes agree,

Fig. 2. Left: The IV curves computed with the different schemes for fixed mesh refinement. The reference solution (black) was computed using the generalized Scharfetter-Gummel scheme on refinement level 12. Right: Convergence studies for the absolute errors of the total current, see [3].

allowing to hypothesize that all schemes are convergent. Fig. 2 shows the influence of the flux discretizations to the solution of fully coupled van Roosbroeck system for a p-i-n benchmark.

REFERENCES

- M. Kantner et. al, "Efficient current injection into single quantum dots through oxide-confined p-n-diodes," *IEEE Transactions on Electron Devices*, vol. 63, no. 5, pp. 2036–2042, 2016.
- [2] M. Kantner and T. Koprucki, "Numerical simulation of carrier transport in semiconductor devices at cryogenic temperatures," *Opt. Quant. Electronics*, vol. 48, no. 12, Art-Id. 543, 2016.
- [3] P. Farrell, T. Koprucki, and J. Fuhrmann, "Computational and analytical comparison of flux discretizations for the semiconductor device equations beyond Boltzmann statistics," WIAS Preprint No. 2331, 2016.
- [4] R. Eymard, J. Fuhrmann, and K. Gärtner, "A finite volume scheme for nonlinear parabolic equations derived from one-dimensional local Dirichlet problems," *Numer. Math.*, vol. 102, no. 3, pp. 463–495, 2006.
- [5] T. Koprucki and K. Gärtner, "Discretization scheme for drift-diffusion equations with strong diffusion enhancement," *Opt. Quant. Electronics*, vol. 45, pp. 791–796, 2013.
- [6] K. Gärtner, "Existence of bounded discrete steady state solutions of the van Roosbroeck system with monotone Fermi–Dirac statistic functions," *Journal of Computational Electronics*, vol. 14, no. 3, pp. 773–787, 2015.
- [7] D. Scharfetter and H. Gummel, "Large-signal analysis of a silicon Read diode oscillator," *IEEE Trans. Electr. Dev.*, vol. 16, pp. 64–77, 1969.
- [8] M. Bessemoulin-Chatard, "A finite volume scheme for convectiondiffusion equations with nonlinear diffusion derived from the Scharfetter–Gummel scheme," *Numerische Mathematik*, vol. 121, pp. 637–670, 2012.
- [9] T. Koprucki, N. Rotundo, P. Farrell, D. H. Doan, and J. Fuhrmann, "On thermodynamic consistency of a Scharfetter–Gummel scheme based on a modified thermal voltage for drift-diffusion equations with diffusion enhancement," *Opt. Quant. Electronics*, vol. 47, pp. 1327–1332, 2015.
- [10] J. Fuhrmann, "Comparison and numerical treatment of generalised Nernst-Planck models," *Comp. Phys. Comm.*, vol. 196, pp. 166 – 178, 2015.