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Abstract—We compare three thermodynamically consistent
Scharfetter-Gummel schemes for non-Boltzmann statistics.

I. INTRODUCTION

The classical Scharfetter-Gummel scheme in combination
with a Voronoı̈ finite volume method provides a discrete
approximation to drift-diffusion currents for non-degenerate
semiconductors which is consistent to the thermodynamic
equilibrium in the sense that discrete solutions of the equi-
librium nonlinear Poisson problem yield zero current.

Non-Boltzmann distribution functions F describing degen-
erate semiconductors are required for the simulation of single
photon sources at cryogenic temperatures [1], [2] or organic
semiconductors. Based on the analysis performed in [3], this
paper compares several possible thermodynamically consistent
generalizations of the Scharfetter-Gummel scheme to general
strictly monotonously increasing distribution functions.

We consider the stationary van Roosbroeck system of charge
transport in semiconductors using standard notation [3] (ψ:
electrostatic potential, ϕn, ϕp: quasi-Fermi potentials, ηn, ηp:
chemical potentials):

−∇· (ε0εr∇ψ) = q (p− n+ C) , (1a)
∇ · jn = qR, jn = −qµnn∇ϕn, (1b)
∇ · jp = −qR, jp = −qµpp∇ϕp (1c)

where the electron and hole densities are defined by

n = NcF(ηn), ηn =
q(ψ − ϕn)− Ec

kBT
, (2a)

p = NvF(ηp), ηp =
q(ϕp − ψ) + Ev

kBT
. (2b)

In the following we restrict our considerations to the continuity
equation for the electrons, partially omitting the index n.

II. DISCRETE THERMODYNAMIC CONSISTENCY

We require our numerical current approximation to satisfy a
relationship which holds at the continuous level: constant quasi
Fermi potentials lead to vanishing currents. Thus, setting any
discrete numerical flux between two adjacent discretization
nodes xK and xL corresponding to neighboring Voronoı̈ cells
(see [3] for more details) K and L to zero

j = j(ηL, ηK , ψL, ψK) = 0

shall imply

ψL − ψK
UT

=: δψKL = δηKL := ηL − ηK . (3)

Thermodynamic consistency helps to avoid unphysical steady
state dissipation [8]. Furthermore, the consistent discretization
of dissipative effects is crucial when coupling the semiconduc-
tor equations to heat transport models.

III. GENERALIZED SCHARFETTER-GUMMEL SCHEMES

If one assumes that the (unknown) flux j between two cells
is constant, it fulfills the integral equation, see [4], [5],

ηL∫
ηK

(
jn/j0
F(η)

+
ψL − ψK
UT

)−1
dη = 1, j0 = qµnNc

UT
hKL

(4)

where the integration limits are given by ηK = ηn (ψK , ϕK)
and ηL = ηn (ψL, ϕL). For strictly monotonously increasing
F(η) this equation has always a unique solution [6]. We will
refer to it as the generalized Scharfetter-Gummel flux.

For the Boltzmann approximation, F(η) = eη , we obtain
from (4) the classical Scharfetter-Gummel scheme [7],

jSG = B (δψKL) eηL −B (−δψKL) eηK , (5)

for the non-dimensionalized edge current jSG = jn/j0 and the
Bernoulli function B(x) := x/(ex − 1).

The Blakemore approximation F (η) = 1
e−η+γ yields for

(4) a fixed point equation [5].

IV. MODIFIED SCHARFETTER-GUMMEL SCHEMES

For general distribution functions, however, we cannot find
closed expressions for the unknown current as a solution to (4).
Since solving an integral equation for each pair of neighboring
discretization points xK ,xL is too expensive in general, we
introduce the following modified schemes as approximate
solutions to (4). They keep the beneficial Scharfetter-Gummel
structure and are all thermodynamically consistent.

A. Diffusion enhanced Scharfetter-Gummel scheme

In [8], [9], a logarithmic average of the nonlinear diffusion
enhancement g(η) = 1

(lnF(η))′ = F(η)/F ′(η) ≥ 1 given by

gKL =
ηL − ηK

logF (ηL)− logF (ηK)
(6)
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Fig. 1. Logarithmic absolute errors between the generalized Scharfetter-Gummel and the diffusion enhanced scheme (left), the arithmetically averaged inverse
activity scheme (middle) and the geometrically averaged one (right) for η̄KL = 5, see [3].

was suggested, leading to the current approximation

jDE = gKL

[
B

(
δψKL
gKL

)
F (ηL)−B

(
−δψKL
gKL

)
F (ηK)

]
.

(7)

B. Inverse activity coefficients

Reformulation of (1b) in terms of activities eηn leads to a
drift-diffusion flux of activities weighted by the inverse β =
F(η)/e(η) of the activity coefficient [10], leading to schemes

jIA =− β̄KL

(
B (−δψKL) eηK −B (δψKL) eηL

)
, (8)

depending on the average β̄KL of βK and βL. We consider
arithmetic and geometric averages.

V. ERROR ESTIMATES AND COMPARISON

Neglecting third-order terms, setting η̄KL = ηL+ηK
2 ,

the error between the modified fluxes and the generalized
Scharfetter-Gummel flux j defined by the exact solution of (4)
can be bounded by, see [3],

|jIA − j| ≤
1

2
F(η̄KL)|δψKLδηKL|, (9)

|jDE − j| ≤
1

2

F(η̄KL)

g(η̄KL)
|δψKLδηKL|. (10)

Fig. 1 shows the errors in terms of δηKL and δψKL for
a fixed average η̄KL and the Blakemore approximation. The
errors vanish along the dashed lines indicating ηK = ηL
(pure drift current) as well as δψKL = δηKL due to the
consistency with the thermodynamic equilibrium. The diffu-
sion enhancement g(η̄KL = 5) = 41.07 indicates that the
Boltzmann approximation (g ≡ 1) is not valid. Such an
high value of g can appear in devices operating at cryogenic
temperatures [2]. Consistent with error estimates (9) and (10),
the comparison in Fig. 1 reveals that the error of scheme
(7) is considerably smaller than for scheme (8) for potential
differences between neighboring cells larger than the thermal
voltage UT . This makes the diffusion enhanced scheme more
accurate on coarser meshes. As the mesh becomes finer, we
note that δψKL and δηKL tend to zero, and flux values close
to the origin in Fig. 1 are attained where all schemes agree,
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Fig. 2. Left: The IV curves computed with the different schemes for
fixed mesh refinement. The reference solution (black) was computed using
the generalized Scharfetter-Gummel scheme on refinement level 12. Right:
Convergence studies for the absolute errors of the total current, see [3].

allowing to hypothesize that all schemes are convergent. Fig. 2
shows the influence of the flux discretizations to the solution of
fully coupled van Roosbroeck system for a p-i-n benchmark.
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