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Abstract—Mathematical models are the foundation of numer-
ical simulation of optoelectronic devices. We present a concept
for a machine-actionable as well as human-understandable rep-
resentation of the mathematical knowledge they contain and the
domain-specific knowledge they are based on. We propose to
use theory graphs to formalize mathematical models and model
pathway diagrams to visualize them. We illustrate our approach
by application to the stationary one-dimensional drift-diffusion
equations (van Roosbroeck system).

I. INTRODUCTION

The numerical simulation of optoelectronic devices is char-
acterized by (possibly huge amounts of) data and software
used for its generation. In order to ensure reproducibility as
well as re-usability of the scientific results appropriate options
for their storage and long-term accessibility of the involved
research data are required.

The numerical data is generally recognized as research data
in the usual sense, which stimulated the setup of data reposi-
tories and related information services such as DataCite [1] or
RADAR [2]. However, a valid interpretation of the numerical
data and the reproducibility of the scientific results require
the corresponding software to be available. Hence, software is
increasingly recognized as research data by scientific com-
munities and funding agencies, so information services for
mathematical software such as swMath [3] emerge.

II. MATHEMATICAL MODELS AS RESEARCH DATA

Still, this is not enough to fully characterize the research
data in areas of mathematical modeling and simulation (MMS)
that has been utilized to achieve the scientific results because
numerical data and the corresponding software can only be
correctly interpreted and used if the corresponding mathemat-
ical models are explicitly linked to both. Therefore [4], [5]
propose to categorize mathematical models as the third pillar
of research data in MMS beside numerical data and software.

However for models, finding an appropriate representation
is far less obvious than for numerical data and software. The
current practice is a mixture of mathematical formulae and
natural language in scientific publications. This (rigorous, but)
informal approach creates ambiguity, potential incompleteness
of the presentation, less reproducibility and often “re-invention
of the wheel”.

In particular, this representation is not suited for the cre-
ation of a “model repository” in analogy to those for data

and software. To remedy this [6] proposes a new machine-
actionable, but human-understandable representation of math-
ematical models that relies on the physical quantities that
are described in the model and the relations between them
(laws, constitutive equations). These are then represented in a
flexiformal representation using the OMDoc/MMT language
[7], [8]. In this paper, we review the flexiformal model
representation developed in [6] and demonstrate its usefulness
on an example of the van Roosbroeck model.

III. MODEL PATHWAY DIAGRAMS

In [6] we developed a diagrammatic representation of math-
ematical models, the Model Pathway Diagram (MPD), that
reflects its inner (physical) structure. In an MPD the physical
quantities are depicted as circles with their physical notations
as labels connected by the physical laws in a rectangle labeled
with the respective equations.

As an example we consider the stationary van Roosbroeck
model describing the semi-classical transport of electrons and
holes in a self-consistent electric field using a drift-diffusion
approximation. The van Roosbroeck model is the standard
model to describe the current flow in semiconductor devices
at macroscopic scale and widely used for the numerical
simulation of optoelectronic devices covering LEDs, lasers and
solar cells. The MPD of a unipolar version of van Roosbroeck
model is shown in Fig. 1.

In the context of perturbation theory in quantum field
theory the usefulness of diagrammatic representations, notably
Feynman diagrams for complex physical phenomena is well-
established. We hope that MPDs similarly provide generally an
easy access to inner structure of complex mathematical models
as its topological structure reflects important properties of the
subsystems. For instance, the loop of the nonlinear Poisson
equation in Fig. 1 reflects the self-consistency of the electric
field.

We have formalized the underlying physics of the van
Roosbroeck model in an OMDoc/MMT theory graph [7], [8]
using the MPD in Fig. 1 as a guide; see [9]. As OMDoc/MMT
is machine-oriented, we support directly MMS workflows via
the the MMT system [10]. Our formalization of the unipolar
stationary one-dimensional van Roosbroeck system is signif-
icant first step towards the formalization of the mathematical
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Fig. 1. Model Pathway Diagram (MPD) of unipolar van Roosbroeck system in one-dimension. One observes the nonlinear Poisson equations complex
on the right (highlighted with blue color) and the carrier transport complex on the left. The loop structure of the nonlinear Poisson equations reflects the
self-consistency of the electric field, whereas the transport complex reveals a tree-like structure. (Material) parameters of the van Roosbroeck model appear as
leafs of the MPD such as the doping profile C, the permittivity εs or the electron mobility µn. For simplicity the representation of the boundary conditions
have been omitted as well as some quantities, e.g. the density of states Nc or the temperature T .

models relevant for numerical simulation of optoelectronic
devices. We started a collection effort for MPDs on [11].

IV. BENEFITS OF A FLEXIFORMAL REPRESENTATION OF
MATHEMATICAL MODELS

The representation of mathematical models as outlined in
the preceding section enables the unique identification of
mathematical models, the automatic derivation of relationships
between them and a modular creation of new models from
existing (then sub-)models.

As a first concrete tool, we have created a special theory
graph viewer that given such a MMT model representation
shows the graph as a MPD – just as in Fig. 1. In the
MPD viewer all nodes and edges are clickable and produce
interactive HTML5 renderings of the formal contents.

Additionally, OMDoc/MMT have a well-established in-
terface to a semantically enhanced Version of TEX, i.e.,
sTEX(semantic TEX/LATEX) that can be used to write seman-
tically enhanced articles and papers, that directly refer to
the database of mathematical models. From these we can
generate HTML5/Web documents which can be instrumented
with semantic services like the ones above.
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