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Abstract—Inverse modeling of two-step ion-exchange processes
for buried glass waveguides fabrication is presented. An adjoint
method based approach has been used to evaluate the Jacobian
matrix of the model and shown its advantages to the finite
difference method.

I. INTRODUCTION

Optical interconnects on board-level are playing an im-
portant role while the high-bandwidth and high-performance
information channels are more in demand nowadays but the
conventional electrical interconnects are limited by signal
integrity problems. Several methods [1], [2], [3], [4] have been
developed for integrating optical interconnects into electro-
optical printed circuit boards (EOCB) and showed their advan-
tages in contrast to the conventional interconnects. Because of
the compatibility with single- and multimode optical fibers,
more attention has been paid to glass waveguides.

The ion-exchange process is a common approach for fabri-
cating graded-index (GI) multimode waveguides in glass. Sur-
face waveguides can be fabricated by placing thin glass sheet
in a dilute salt melt (e.g. AgNO3)[5]. In some applications
(e.g. optical coupler and splitter) waveguides with a buried
graded-index profile are expected. These can be achieved
using a two-step diffusion process [6], which forms a surface
waveguide in the first step and modifies it by inverse diffusion
in pure NaNO3-melt in the second step.

The two-step process can be modeled using Fick’s law [7]
with knowing process parameters like total diffusion time,
diffusion coefficient of Ag+ in salt melt and process time for
the first step. A “forward modeling” refers to the determination
of the relevant waveguides characteristics such as the shape
of Ag+ profile, the maximum Ag+ concentration and its
position with given process parameters. In contrast, an “inverse
modeling”, which refers to estimation of process parameters in
order to obtain desired Ag+ concentration profile in glass, is of
great interest to industrial application. However, this two-step
diffusion process is highly non-linear. An analytic solution of
the inverse problem is improbable.

In this work the problem of inverse modeling of the two-step
diffusion process are solved using gradient based optimization
techniques. The adjoint method, which has been successfully
applied in geophysics to solve a steady-state inverse problem
[8], is used to evaluate the gradients of our time-dependent
inverse model.

Fig. 1. Schematic representation of the process domain Γ (left) and the
concentration profile u after two-step diffusion process (right).

II. MODELING

According to Fick’s law the one dimensional Na+-Ag+

exchange process can be described with a time–dependent
diffusion equation [7]. By regarding the boundary conditions
(Fig. 1), the two-step diffusion process can be defined as
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where
• State u is the normalized Ag+ concentration in glass,
• t is the diffusing time,
• D is the self-diffusion constant of Ag+ in glass,
• ton is the diffusion time for the first step,
• f(ton) is a modified step function:

f(ton) =

{
1 t ≤ ton (first step diffusion)
0 t > ton (second step diffusion).

The Ag+ concentration can be calculated by solving (1) using
the Finite-Element-Method. The solution is described in more
detail in [9].

Using the squared L2 norm, a cost function g(t,D, ton) for
solving the inverse problem of the two-step diffusion process
along Γ with given target concentration profile utarget can be
defined as

g(t,D, ton) =

∫
Γ

(u(t)− utarget)2 dx. (2)
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An optimization procedure – Gradient descent – is used to
minimize the cost function. Normally, the Jacobian matrix can
be evaluated using finite difference method. However, with
this method equation (1) needs to be solved twice for each
model parameter. Thus calculating Jacobian matrix J can be
very time-consuming, especially when the number of model
parameter is large. Using the adjoint method after solving the
adjoint partial differential equation
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µ0 = 2(u(T )− utarget) (3b)
µ = 0 at x = 0 (3c)
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the Jacobian matrix at the final processing time T can be
obtained as
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This approach is independent of the number of model param-
eter and needs only to run once for the forward model and
once for the adjoint model.

III. RESULTS AND DISCUSSION

An optimization routine using the Jacobian matrix has been
developed to solve the inverse problem of the two-step diffu-
sion process. The aim is to find the proper values of t,D, ton,
which minimize g(t,D, ton). Fig. 2 depicts the convergence
curves of g(t,D, ton) with the model parameters during the
optimization procedure. The procedure started with randomly
chosen parameters. The appropriate profile is depicted in
Fig. 3a with dash line. The target profile and the optimized
profile, which is calculated with the converged parameters, are
depicted respectively in Fig. 3a with solid line and red stars.
The absolute difference between them is showed in Fig. 3b. A
very good agreement between the target and optimized profile
is obtained.

The one-dimensional inverse problem of the two-step diffu-
sion process was solved using optimization technique. The Ja-
cobian matrix for optimization was evaluated using an adjoint
method based approach. With this method, the Jacobian matrix
was evaluated more efficiently than with the finite difference
method. The application of the adjoint method can be easily
extended to solve a two-dimensional inverse problem of the
ion-exchange process and it will be discussed in the following
work.
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