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Abstract—GaN-based alloys are characterized by important
spatial composition inhomogeneities resulting from the random
distribution of Indium atoms. These variations can induce carrier
localization and strongly influence the performance of the devices.
We present here a work based on the recent theory of the
localization landscape, whose main result is the derivation of
an effective potential W . The basins of this effective potential
define the localization subregions of carriers. The exponential
decay of the wave functions outside these regions is controlled
by the Agmons distance, which is calculated on 2D landscape
map. Interactions between bound states are shown to happen
along very well defined preferential paths within the system.

I. THE LOCALIZATION LANDSCAPE THEORY

We first briefly review the main results of the localization
landscape theory, described for the first time in [1]. In this
theory, the spatial position of the quantum states in a random
potential field V (such as the potential energy resulting from
the compositional fluctuations of an InGaN disordered layer)
can be precisely predicted without the need of solving the
Schrödinger equation

Ĥψ = Eψ, with Ĥ = − h̄2

2m
∆ + V̂ (1)

Instead, we solve a much simpler linear Dirichlet problem
whose solution u is called the localization landscape:

Ĥu = 1 . (2)

The main feature of this landscape is that its valley lines de-
limit the localization regions of the wave functions, following
the inequality [1]:

|ψ(~r)| ≤ Eu(~r) (3)

where ψ is an eigenfunction of Ĥ and E is its associated
eigenenergy. Indeed, Eq. (2) ensures that ψ is small along
the valley lines of the landscape (where u is small), which
constrains ψ to be confined within the subregions defined
by the valley network of u. Furthermore, the landscape also
provides information on the shape of the fundamental state
in each localization subregion Ωi, as well as its associated
eigen-energy [2]:

ψi0 ≈
u

||u||
(4)

Ei0 =
〈u|1〉
||u||2

=

∫∫∫
Ωi
u(~r) d~r∫∫∫

Ωi
u(~r)2 d~r

(5)

(a) (b)
Fig. 1. (a) 3D representation of the original disordered potential V . (b) The
valley lines of the landscape 1/u (black lines) delimit the various localization
regions.

In the following, we compute localized states on a 2D unitary
square domain divided into 20×20 smaller squares on which
V is piecewise constant and randomly determined between 0
and 8000 (Fig. 1a).

Recently, Arnold et al. [3] showed that the inverse of u,
here called W and homogeneous to an energy (Fig. 1b),
acts as an effective confining potential seen by the localized
eigenstates, and that its basins (delimited by the valley lines
of u) correspond to the localization subregions. Indeed, the
following equality, satisfied by any quantum state |ψ〉

〈ψ|Ĥ|ψ〉 =
h̄2

2m
〈u~∇(

ψ

u
)|u~∇(

ψ

u
)〉+ 〈ψ|Ŵ |ψ〉 (6)

shows that its energy can never be smaller than the one it
would have in a potential W (~r). This result also shows that
the quantity (W − E)+ can be used to construct an Agmon
distance which controls the long-range exponential decay of
the localized wave function in the barrier regions where E <
W .

II. AGMON’S DECAY OF WAVE FUNCTIONS

The Agmon distance between two points ~r0 and ~r is defined
as the length of the shortest geodesic path connecting the
two points when using the Agmon metric

√
(W − E)+ (with

f(x)+ = max(f(x), 0)). Considering a state |ψ〉 of energy E
centered in ~r0, the Agmon distance between the points ~r0 and
~r is:

ρE(~r0, ~r) = min
γ

(

∫
γ

√
(W (~r)− E)+ ds) (7)
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where the minimum is computed on all paths connecting the
two points. It can be shown [4] that the problem of finding
the Agmon distance from a given point ~ri to any other point
~r is equivalent to solving the eikonal equation:

|∇ρEi(~ri, ~r)|
2

=
2m

h̄
(W (~r)− Ei)+ . (8)

This eikonal equation is solved using a Fast Marching Algo-
rithm with an upwind gradient scheme (Fig. 2a). In addition,
the Agmon distance governs the decay of a wave function ψi
through the following inequality [5]:

|ψi| ≤ cie−ρEi
(~ri,~r) with ci =

1√∫
e−2∗ρEi

(~ri,~r)d~r
(9)

where Ei is the energy of the state, and ~ri is the position of
the minimum of W = 1

u in this region. The coefficient ci
is obtained by normalizing the wave function over the entire
space.

III. PREFERENTIAL INTERACTION PATHS

Interaction matrix elements between bound states are now
calculated from Agmon distance maps. Hopping-assisted
transport from one state to another happens through absorption
or emission of phonons, with the following eletron-phonon
Hamiltonian:

Hep =
∑
q

a+
j aib

η
q

(
−iη cq 〈ψj |e(−iη~q.~r)|ψi〉

)
, (10)

where a+
j and aj are the creation and annihilation operators

of an electron on site j (resp. i), bηq is the creation (η = +1
for emission process) or annihilation (η = −1 for absorption
process) operator of a phonon of mode ~q, and cq is a coupling
factor. The bracket elements are then, at first order:

〈ψj |e−iη~q.~r|ψi〉 =

∫
ψ∗
j e

−iη~q.~rψi d~r (11)

≈ −icicjη
∫
e−(ρi(~r)+ρj(~r)) ~q.~r d~r (12)

The integrand in the above equation remains significantly large
only along a preferential path that minimizes simultaneously

(a) (b)
Fig. 2. (a) Agmon distance computed from the center of a localization
subregion located inside the domain (log scale). (b) Examples of preferential
interaction paths determined by the sum of Agmon distances (see Eq. 12).
These paths essentially go through the saddles of the effective potential W
displayed in Fig. 1b.

both Agmon distances ρi and ρj . This defines a most favorable
path of interaction between two bound states that can be
directly read on the map of W , since this path essentially goes
through the saddle points of this landscape. Fig. 2b displays an
example of several preferential paths between localized states.
Together, these paths define a subnetwork of connected sites,
equivalent to the Miller and Abrahams [6] resistor network
model for localized carriers transport.
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