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Abstract—We present a novel kinetic Monte Carlo version for
the atomistic valence force fields algorithm in order to model
a self-assembled quantum dot growth process. We show our
atomistic model is both computationally favorable and capture
more details compared to traditional kinetic Monte Carlo models
based on continuum elastic models. We anticipate the model will
be useful to experimentalists in understanding better the growth
dynamics of quantum dot systems.

I. INTRODUCTION

Self-assembled InAs/GaAs quantum-dot structures (QD)
have recently received much attention due to their relevance
for optoelectronic devices [1].

Strain caused by the differences of the lattice constants of
the QD and substrate (matrix) material is decisive for the so-
called self-organized effects, which occur during the growth of
strained heterostructures: thermodynamic and kinetic ordering
effects which can create a three-dimensional island within a
matrix [2].

An important aspect in this context is also the influence
of the lattice mismatch induced strain field and its effects
on the bandstructure and optoelectronic properties. The strain
distribution in crystals is usually treated with the continuum
mechanical model [3], or with the valence force field (VFF)
model [4], or using density functional techniques [5]. An
exhaustive analysis of the VFF and continuum models is
presented in Ref. [6].

Heteroepitaxial growth has been simulated with continuum
formulations as island dynamics [7], [8], phase field models
[9], [10], or sharp interface models [11], [12]. However, recent
works showed the importance of using kinetic Monte Carlo
(KMC) algorithms [13], [14].

In this work we introduce a new KMC algorithm where
the elastic energy is given by the VFF model. Starting from
an atomistic configuration which reproduces the experimental
deposition of a material with a larger lattice constant than
the substrate and with a thickness above the critical thickness
of pseudomorphic growth [15], the system is made to evolve
toward a thermodynamic equilibrium regulated by constraints
given by optimization models of complex systems [16], [17].
To our knowledge this is the first time a model combine

atomistic strain calculations with a KMC scheme to describe
a QD growth.

II. THEORY

A. Valence force fields

Lattice-mismatched zincblende semiconductor alloy ground
state configurations have been determined for a group of
lattice-mismatched III-V semiconductor alloys, such as GaInN,
GaInP, GaInAs, GaInSb, InAsSb, and InPAs [18]. A VFF
model for strain energy with two parameters 𝛼 and 𝛽 for
lattice-mismatched isovalent semiconductor zincblende alloys
has been derived in Ref. [19].

B. Kinetic Monte Carlo

Heuristic optimization techniques based on KMC algo-
rithms are used in different fields of science. Among the
most used KMC is the simulated annealing (SA), a local
search Metropolis algorithm which minimizes the energy of
a candidate configuration in a way similar to a real physical
system, minimizing its energy under cooling [20]. In this work
a new configuration is generated by exchanging cations. The
change is always accepted if the energy is lower, or with a
probability

exp(−Δ𝐸/𝑇 ), (1)

if the energy is higher, where Δ𝐸 is the change in energy and
𝑇 is the temperature. In this way, a gradual annealing with
decreasing of temperature should help reaching the ground
state. However, in a complex systems, i.e. a hard combinatorial
problem, SA may be trapped in metastable configurations.

III. RESULTS

In order to check if finding a ground state for the elastic
energy was really a hard combinatorial problem, we made
some preliminary simulations with an InAs/GaAs zincblende
QD, a regular truncated pyramid with base 𝑏 = 12𝑛𝑚 hight
ℎ = 5𝑛𝑚. We considered three different In values, i.e., 10%,
30% and 50%, and for each concentration, starting from a
random initial configuration of the atoms, we let the system
evolve only allowing exchanges between Indium and Gallium
atoms that decreased the elastic energy. We considered 20
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Fig. 1: Top: simple KMC simulations (Δ𝐸 < 0) for different
In content. Below: SA KMC simulations (one iteration at each
temperature). Relative elastic energy axis of ordinates for both
plots.

different configurations in order to have a good statistical
average. As we can see in Figure 1 (top), the system quickly
freezes in a local minimum. Here by ’iteration’ we mean
a complete sweep of exchanges over all atoms. The final
configuration heavily depends on the initial state as evidenced
by the large error bars.

In contrast, using an SA algorithm, the system easily reaches
a final configuration which is much less dependent on the
initial state, as shown in Figure 1 (bottom). Interestingly, the
annealing of the QD favors clustering of In atoms. This can be
seen in Figure 2, showing a significant increase in the counts
of In ions at distances less than 1.5 nm from each other.

We will show an application of our algorithm to a situation
that mimics an experimental growth process, using physical
parameters derived from real data for growth of InAs/InP QD
nucleation. We believe that our model may give interesting
indications to the experimentalists particularly about the de-
pendence of the QD size on the growth temperatures.
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Fig. 2: Statistics showing the counts of the total number of In
atoms within spheres of 1.5 nm around each single In atom
(50% In content). In other words, there are ’counts’ In atoms
which have ’number of In atom’ around within a sphere of
1.5 nm. Original random configuration (Top panel) and after
annealing (Bottom panel).
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