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Abstract—A system of two mutually delay-coupled semicon-
ductor lasers for integration in a photonic integrated circuit
is investigated. Multi-stabilities and bifurcation scenarios are
presented, followed by a comprehensive frequency analysis of the
symmetric and symmetry-broken, 1-colour and 2-colour states.

I. INTRODUCTION

We theoretically investigate the dynamics of two mutu-
ally delay-coupled semiconductor lasers in a face to face
configuration for integration in a Photonic Integrated Circuit
(PIC). We consider lasers separated by a distance d which
are coherently coupled via their optical fields. The time delay,
τ = d/c, where c is the speed of light, arises from the finite
propagation time of the light from one laser to the other one.
This system is of importance in the creation of advanced
modulation formats within a PIC, and has been widely studied,
both experimentally and theoretically [1], [2]. The system is
well described by Lang Kobayashi rate equations, which are a
system of delay differential equations (DDEs) with one fixed
delay. Yanchuk et al. [3] studied this system in the limit of zero
delay and predicted one-colour symmetric states for very small
delays. Later Erzgräber et al. [4] studied the bifurcations of 1-
colour states for large delays. Moreover, for zero delay, stable
symmetric and symmetry-broken 1-colour and 2-colour states
have been recently predicted by Clerkin et. al. [5]. In particular,
symmetry-broken 2-colour states are highly interesting from an
application point of view, for example in the context of all-
optical switching [5]. Here we show that these states continue
to exist for finite delays. A detailed study of the relevant
bifurcations of the system with finite delays in the range of
τ=0-1 (in units of photon lifetime) was performed, using the
continuation Matlab package DDE-BIFTOOL.

II. RATE EQUATION MODEL

The Lang-Kobayashi-type rate equation has been used to
model the system of two mutually coupled lasers as [4]:

dE1(t)

dt
= (1+iα)N1(t)E1(t)+κe−iCpE2(t−τ)−i∆1, (1)

dE2(t)

dt
= (1+iα)N2(t)E2(t)+κe−iCpE1(t−τ)−i∆2, (2)

T
dN1(t)

dt
= P −N1(t)− (1 + 2N1(t))|E1(t)|2, (3)
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T
dN2(t)

dt
= P −N2(t)− (1 + 2N2(t))|E2(t)|2, (4)

Here E1 and E2 are the normalized complex slowly-varying
envelope of the optical fields, and N1 and N2 are the normal-
ized inversions for laser 1 and laser 2, respectively. Also, T , α
and P are parameters of the individual lasers. T = 392 is the
normalized carrier lifetime (in units of the photon lifetime).
α = 2.6 is the linewidth enhancement factor, and P = 0.23
is the pumping parameters, which describes the amount of the
electrical current used to pump the electron-hole pairs in each
lasers. Time t is measured in the units of photon lifetime, τp,
which we estimate to be around 7.7 ps.

The main bifurcation parameters are the coupling phase
Cp and coupling rate κ. As we are interested in modelelling
lasers within a PIC, we consider a separation of around 1.5
mm between lasers, which translates into a value of τ between
0 and 1. In this paper we concentrate on the case with zero
detuning ∆ = 0.

Equations (1)-(4) are a system of DDEs with a single fixed
delay. The dynamical variables E1 and E2 are slowly varying
quantities relative to a central frequency Ω0. Therefore the
optical fields of laser 1 and 2 are given by E1(t) exp(iΩ0t)
and E2(t) exp(iΩ0t). In this work we have performed a
detailed study of the relevant bifurcations of the system using
the MATLAB package DDE-BIFTOOL [6], which reveals
the behaviour of the mutually coupled lasers, and predicts
the stability regions for wide range of parameters [7]. We
also solve the rate equations (1)-(4) for given τ , κ and Cp
numerically.The calculated optical field frequencies indicate
the existence of one-colour and two-colour, symmetric and
symmetry-broken states for different values of parameters.

III. RESULTS AND DISCUSSION

A simple one-colour ansatz for the solution of system
(1)-(4) is given by E1(t) = Rs1e

iωst, E2(t) = Rs2e
iωst+iσ ,

N1(t) = Ns
1 and N2(t) = Ns

2 , where Rs1,2, Ns
1,2, ωs, and σ

are suitable real constants. In the case of R1 = R2 we have
a symmetric one-colour state. In this case, the constant ωs,
which is the deviation of the frequency of the coupled laser
system from solitary laser frequency Ω0, is given by

ωs = ±κ
√

1 + α2 sin(Cp + ωsτ + arctan(α)) (5)

Here + and − correspond to in-phase (σ = 0) and anti-
phase (σ = π) solutions, respectively. We use this symmetric
one-colour solution as a starting point for the numerical
continuation and explore the bifurcations, which occur as the
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Fig. 1. Pitchfork (solid lines) and Hopf (dashed lines) bifurcation diagram
of system (1)-(4) for τ = 0.01− 2.

two bifurcation parameters coupling phase Cp and coupling
strength κ are varied. Fig. 1 shows the bifurcation diagrams
for τ = 0.2 (left panel) and τ = 1 (right panel). Hopf,
pitchfork, saddle node, torus and period doubling bifurcations
are encountered as indicated by the various bifurcation lines,
which separate the parameter space into eight (τ = 0.2) or six
(τ = 1) distinct regions.

Regions a and b presents stable in-phase and antiphase
one-colour states. This is consistent with one-colour locked
regions in Fig 1. In region c, which is a tiny area between the
two Hopf lines, it is possible to find stable symmetric two-
colour states. Region d of Fig. 1 shows existence of stable
symmetry-broken two-colour states for intermediate coupling
rate and phase. For small delay times, there is a region (region
f in left hand panel of Fig. 1) with a stable symmetry-broken
one-colour state. However, this region vanishes for larger
delay times (right hand panel). Region e represents region
of bistability between one-colour symmetric or two-colour
symmetry-broken states, and it depends on the initial condition,
which of the two states is obtained. Similarly region g shows a
bistability between symmetric one-colour and symetry-broken
one-colour states [7].

We have also performed a comprehensive frequency anal-
ysis by solving DDEs in Eqs. (1)-(4) numerically using an
explicit Runge-Kutta algorithm. The optical frequency of the
lasers is calculated via a Fourier transform of the optical field
of the lasers. In Fig. 2 the calculated optical frequency of the
lasers are shown for τ = 0.2 and 1, for 3 different values of
coupling κ = 0.1, 0.2 and 0.3. We have found that for small
and high values of phase (Cp < 0.2 and Cp > 0.6) the lasers
are locked to a single common frequency. The frequency of the
symmetric one-colour state, can be also calculated analytically,
using Eq. 5 which shows a perfect match with numerical
results.

Moreover, in agreement with the result of Fig. 1, stable
symmetry-broken two-colour states are observed for interme-
diate coupling, where both lasers lase simultaneously at two
optical frequencies which are separated by up to 150 GHz. We
have also calculated the frequency of symmetry-broken two-
colour states, using an analytical approach which gives a very
good agreement with the result of Fig. 2.

Fig. 2. The frequency spectrum, relative to the frequency of the free-running
lasers, versus the coupling phase Cp for τ = 0.2 and 1, for coupling strength
κ = 0.1 (a and d), κ = 0.2 (b and e) and κ = 0.3 (c and f).

IV. CONCLUSION

We have shown that the stable symmetry-broken two-
colour states continue to exist for finite delay time, and
therefore stable states exist for almost all values of the coupling
phase Cp and delay time up to 1. However, increasing delay
time makes the area with intermediate Cp and low value of κ
unstable. We observe that the frequency of one colour states
changes linearly with coupling κ. We are currently trying to
benchmark our results against the experiments that are carried
out in our group.
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