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Abstract—We present and analyze a family of highly accurate
quadrature-based Scharfetter-Gummel fluxes for charge carrier
transport in semiconductors which are particularly useful for
non-Boltzmann statistics.

I. INTRODUCTION

Different numerical methods have been proposed to dis-
cretize the van Roosbroeck system describing charge carrier
transport. The Scharfetter-Gummel (SG) scheme provides a
thermodynamically consistent discrete carrier flux approxima-
tion for non-degenerate semiconductors in the Voronoi finite
volume method [1]-[3]. For a detailed overview see [4].

Degeneracy effects become relevant at cryogenic tempera-
tures [5], for high doping concentrations or in organic ma-
terials [6], [7] so that non-Boltzmann (e.g. Fermi-Dirac and
Gauss-Fermi) statistics JF are required. Then a carrier flux
can be defined implicitly as the solution of an integral equa-
tion which one often cannot find analytically. Circumventing
this difficulty, modified SG fluxes [2], [8], [9] have become
popular. Here, we present a novel way to numerically solve
the integral equation via quadratures and Newton’s method
[3], [10] and demonstrate the high accuracy of the resulting
fluxes.

We consider the stationary van Roosbroeck system for
charge transport in semiconductors using the potential ) and
the quasi-Fermi potentials ,, and ¢, as unknown variables:

—V- (&, V) = q(p—n+C), (1a)
\Y jn = qRa .]n = _q/“’tnnvson7 (1b)
Viip=—qR,  Jp=—quppVep (Ic)
where the electron and hole densities are defined by

_ _ q(p — pn) — B¢
n=NF(in), =T ()

q B d) + Ev
p = NoF(1p), p = %~ (2b)

B

For simplicity, we restrict our considerations to the continuity
equation for the electrons, partially omitting the index n.
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II. DISCRETE THERMODYNAMIC CONSISTENCY

We require the numerical flux approximation to (at least
approximately) satisfy the thermodynamic consistency prop-
erty expressed as: vanishing currents for constant quasi Fermi
potentials. Thus, for two adjacent discretization nodes X
and xz, corresponding to neighboring Voronoi cells K and
L (see [2] for more details), numerical fluxes shall also (at
least approximately) vanish,

J=3JL,nr, YL, vx) =0
which implies dng = §vi 1, where

wL [;TwK = 5wKLu

Thermodynamic consistency becomes relevant if the van Roos-
broeck system has to be coupled to more complex models and
avoids unphysical steady state dissipation [9].

MKL =N — K- 3)

IIT. GENERALIZED SG SCHEMES

Assuming a constant flux 7 and a linear variation of the
electrostatic potential ) between two neighboring cells, a
numerical flux can be obtained by solving a two-point bound-
ary value problem for the drift-diffusion flux projected onto
the line connecting the discretization nodes xx and x,. For
Boltzmann statistics, this problem can be solved analytically
[1]. In the general case, this leads to an integral equation for
the flux [11], [12],

nL . . 1
Jn/jo YL — ¢K> . Ur
+ dnp=1, = qnN.—— (4
NK

with ng = 0, (YK, prc) and nz, = 0, (Y1, 1)
IV. QUADRATURE BASED SG SCHEMES

Denoting the integrand in (4) with G(9; 0¢ kL, jgsq), We
can approximate (4) for jgsq = jn/jo by

N
H(jgsg) = >  wiG(ni; 0¥KkL, Jgsg) —1 =0,  (5)
=1

where w; are some integration weights, 7; the quadrature
nodes and N the number of quadrature nodes. The resulting
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Fig. 1. Logarithmic absolute £3 errors depending on the number of quadrature points N for Gauss-Fermi distribution functions with different fixed values of
fx 1, and several quadrature rules. From left to right, errors for 7, = —10, —5, 0. In all figures the errors from the quadrature-based schemes are compared

to the corresponding error between the flux obtained via the diffusion enhanced scheme [9] and j128 for Gauss-Fermi distribution functions.
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Fig. 2. Numerical verification of validity of the thermodynamic consistency
for 7 € [nx,nr] via Gauss-Legendre quadrature, varying the number of
quadrature points N. Left: dnxy = ¥xr = 4 and 7k, € [0, 4] with step
equal to 0.025. Right: fixr, = 2 and dnxr, € [0, 4] with step 0.025.
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nonlinear equation for j,, is solved via Newton’s method. As
starting guess the diffusion-enhanced flux [8], [9] is used. A
detailed explanation of this approach is reported in [10].

V. DISCUSSION

In Figure 1, we present a flux accuracy study in terms of
the ¢5 norm (similar for the /., norm, [10]) for four different
quadratures using the Gauss-Fermi distribution function. We
fix gy = 2T — 10, 5,0 and impose ¢ € [—6, 6]
with step 0.1, §n € [—4,4] with step 0.1 and an energetic
disorder o = 5. The error was computed by

err(N) := |jévsg — j;?§| . (6)
The figure shows the high accuracy of the proposed scheme
when compared to a state-of-the-art diffusion-enhanced SG
flux [8], [9] (green). All four quadrature rules (Gauss-
Legendre, Gauss-Lobatto, Gauss-Kronrod and Clenshaw-
Curtis) lead already with just two quadrature nodes to numer-
ical fluxes which are more accurate than the reference flux.
For the more challenging case of high diffusion enhancement
the accuracy improves further. In addition, in thermodynamic
equilibrium our scheme produces numerical flux values on the
order of the machine precision (see Figure 2). Thus for all
practical purposes it is thermodynamically consistent.

V1. OUTLOOK

We intend to use this approach in the fully coupled non-
linear van Roosbroeck system in order to assess its merits in

gsg

the simulation of a realistic semiconductor device. Further-
more, we plan comparisons to other numerical schemes such
as the finite element method, following ideas from [13].
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