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Abstract—We present and analyze a family of highly accurate
quadrature-based Scharfetter-Gummel fluxes for charge carrier
transport in semiconductors which are particularly useful for
non-Boltzmann statistics.

I. INTRODUCTION

Different numerical methods have been proposed to dis-

cretize the van Roosbroeck system describing charge carrier

transport. The Scharfetter-Gummel (SG) scheme provides a

thermodynamically consistent discrete carrier flux approxima-

tion for non-degenerate semiconductors in the Voronoı̈ finite

volume method [1]–[3]. For a detailed overview see [4].

Degeneracy effects become relevant at cryogenic tempera-

tures [5], for high doping concentrations or in organic ma-

terials [6], [7] so that non-Boltzmann (e.g. Fermi-Dirac and

Gauss-Fermi) statistics F are required. Then a carrier flux

can be defined implicitly as the solution of an integral equa-

tion which one often cannot find analytically. Circumventing

this difficulty, modified SG fluxes [2], [8], [9] have become

popular. Here, we present a novel way to numerically solve

the integral equation via quadratures and Newton’s method

[3], [10] and demonstrate the high accuracy of the resulting

fluxes.

We consider the stationary van Roosbroeck system for

charge transport in semiconductors using the potential ψ and

the quasi-Fermi potentials ϕn and ϕp as unknown variables:

−∇· (ε0εr∇ψ) = q (p− n+ C) , (1a)

∇ · jn = qR, jn = −qµnn∇ϕn, (1b)

∇ · jp = −qR, jp = −qµpp∇ϕp (1c)

where the electron and hole densities are defined by

n = NcF(ηn), ηn =
q(ψ − ϕn)− Ec

kBT
, (2a)

p = NvF(ηp), ηp =
q(ϕp − ψ) + Ev

kBT
. (2b)

For simplicity, we restrict our considerations to the continuity

equation for the electrons, partially omitting the index n.

II. DISCRETE THERMODYNAMIC CONSISTENCY

We require the numerical flux approximation to (at least

approximately) satisfy the thermodynamic consistency prop-

erty expressed as: vanishing currents for constant quasi Fermi

potentials. Thus, for two adjacent discretization nodes xK

and xL, corresponding to neighboring Voronoı̈ cells K and

L (see [2] for more details), numerical fluxes shall also (at

least approximately) vanish,

j = j(ηL, ηK , ψL, ψK) = 0

which implies δηKL = δψKL, where

ψL − ψK

UT

=: δψKL, δηKL := ηL − ηK . (3)

Thermodynamic consistency becomes relevant if the van Roos-

broeck system has to be coupled to more complex models and

avoids unphysical steady state dissipation [9].

III. GENERALIZED SG SCHEMES

Assuming a constant flux j and a linear variation of the

electrostatic potential ψ between two neighboring cells, a

numerical flux can be obtained by solving a two-point bound-

ary value problem for the drift-diffusion flux projected onto

the line connecting the discretization nodes xK and xL. For

Boltzmann statistics, this problem can be solved analytically

[1]. In the general case, this leads to an integral equation for

the flux [11], [12],

ηL
∫

ηK

(

jn/j0

F(η)
+
ψL − ψK

UT

)

−1

dη = 1, j0 = qµnNc

UT

hKL

(4)

with ηK = ηn (ψK , ϕK) and ηL = ηn (ψL, ϕL).

IV. QUADRATURE BASED SG SCHEMES

Denoting the integrand in (4) with G(η; δψKL, jgsg), we

can approximate (4) for jgsg = jn/j0 by

H(jgsg) :=
N
∑

i=1

wiG(ηi; δψKL, jgsg)− 1 = 0, (5)

where wi are some integration weights, ηi the quadrature

nodes and N the number of quadrature nodes. The resulting
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