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Abstract—Absorption modeling is at the core of the design 
process of nanostructured solar cells and photodetectors. We 
compare the performance of three of the most popular numerical 
modeling methods: the Fourier modal method (FMM), the finite 
element method (FEM) and the finite-difference time-domain 
(FDTD) method. We find that the numerically most efficient 
method depends on the geometry of the system, as well as on which 
physical quantities are needed for further analysis. From our 
study, we will highlight the optimum choice of method for various 
current nanostructures. With these guidelines, we enable design 
optimization that would otherwise be impossible with a sub-
optimal method choice. 
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I. INTRODUCTION 
Nanostructures allow for the tuning of scattering and 

absorption of light. Such control gives the prospect of efficient 
solar cells and photodetectors if designed properly [1]. For the 
design and optimization of such nanostructured photonic 
devices, efficient optics modeling is needed [2]. To enable a 
successful design process for a specific photonic structure, it is 
important to be able to choose an appropriate and numerically 
efficient modeling method.  

Here, for absorption modeling, we compare the performance 
of three of the most popular methods: the Fourier modal method 
(FMM) with our in-house developed implementation [3], the 
finite element method (FEM) in Comsol Multiphysics [4], and 
the finite-difference time domain (FDTD) method in Lumerical 
FDTD Solutions [5]. All these methods solve the same optics 
diffraction problem, as described by the Maxwell equations. 
Here, for brevity, we exemplify with the specific case of 
normally incident light toward a square array of semiconductor 
nanowires (NWs) (Fig. 1a)), which are a popular type of 
nanostructures for opto-electronic devices [1]. However, we 
have performed an extended study for nanostructures in general. 

 
Fig. 1. (a) GaAs nanowires of diameter D and length L in a square array of 
period P. (b) Modeled absorptance with FMM, FEM, and FDTD of GaAs NWs 
of D = 160 nm, L = 2000 nm and P = 400 nm at λ = 600 nm.  

In our extended study, FMM, FEM or FDTD can differ by a 
factor of >100 in calculation time, for a given nanostructure. 
Importantly, a single method was not optimum for all cases. The 
optimum choice for method depends strongly on the geometry 
and materials of the system. Furthermore, for a given system, 
the optimum method can also depend strongly on exactly which 
information, e.g. absorption or reflection spectra, local 
absorption, or photogeneration rate, is needed for the design 
optimization. 

II. MODELING METHODS 
In FMM, we use a plane-wave basis for solving for 

eigenmodes in the system [3]. These eigenmodes are then 
propagated through the system in the out-of-plane z-direction 
(along the NW axis in the case of the NW array). Here, for the 
square array, we use 2nb+1 plane waves in each of the in-plane 
directions, giving (2nb+1)2 plane waves in total. To reach better 
convergence, we increase nb. Thanks to the mirror symmetry in 
the x and y direction in our test array, we can reduce the actual 
basis size to nb(nb+1) in the numerical implementation.  

In FEM, we mesh the system with tetrahedral elements. The 
convergence of the results is highly dependent on the meshing, 
and FEM allows for varying meshing resolution in different 
regions. We investigated empirically how to optimize the 
meshing to minimize the number of mesh elements to reach a 
given convergence level. The number of mesh elements is 
proportional to the number of degrees of freedom (NDOF) in the 
numerical problem. At the top and the bottom, perfectly matched 
layers (PMLs) are included. The PMLs are designed to absorb 
light incident toward them, in order to mimic semi-infinite 
regions. To utilize the mirror symmetries in the x-y plane, we 
model only ¼ of the full unit cell (for 0 ≤ x ≤ P/2 and 0 ≤ y ≤ 
P/2 with the nanowire axis at x = 0 and y = 0). Assuming x-
polarized incident light without loss of generality for the x-y 
symmetric array, we use perfect electric conductor (PEC) 
boundary conditions at the boundaries at y = 0 and y = P/2; and 
perfect magnetic conductor (PMC) boundary conditions at x = 0 
and x = P/2 [6]. To model the incident light, we use a 
background-field-scattered-field formulation. For the 
background field, we use the analytical solution for the case of 
a plane wave incident toward the system consisting of just the 
substrate. After that, we include the nanowires and solve 
numerically, with the FEM, for the scattered field. 

In our FDTD modeling, space is discretized to allow for the 
calculation of finite-differences to approximate the spatial 
derivatives in the Maxwell equations. We use PMLs, PECs and 
PMCs similarly as for FEM. In contrast to FMM and FEM, 
which work at a fixed wavelength, FDTD works in the time-
domain. An incident pulse is propagated towards the structure 
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by forward time-stepping. For wavelength-resolved response, 
monitors are placed at varying positions. The electromagnetic 
fields are recorded at the monitors at each time step. After the 
modeling, the time-dependent fields at the monitors are Fourier 
transformed to the frequency domain to yield wavelength-
dependent response. Importantly, an analytical form is needed 
for the refractive index, and hence it is not possible to use in the 
modeling exactly the same broadband refractive index values as 
tabulated. Instead, a fitting of harmonic resonances to tabulated 
values is performed. In Fig. 1(b), the visible discrepancy 
between FDTD and FMM/FEM results originates from the 
specific fitting we used. 

 
Fig. 2. (a) Absorptance modeling with FMM and FEM of GaAs NWs of D = 
160 nm, L = 2000 nm, and P = 400 nm at λ = 600 nm. (b) Same as (a) but for 
absorption in a region of 80 nm in diameter closest to the axis of the nanowires.  

III. RESULTS 
For brevity, we focus here on FMM and FEM since both 

solve the Maxwell equations for a fixed wavelength λ using the 
exactly same tabulated values for the refractive index of the 
materials (the GaAs in the NWs and the substrate in this study, 
with tabulated values from Ref. [7]). See Fig. 1(b) for the 
excellent broadband agreement between FMM and FEM. 

A. Total absorption in NWs 
We show in Fig. 2(a) the numerical convergence of the 

absorption in the NWs at a selected λ = 600 nm. In FMM, the 
absorptance is calculated as A = 1 – R – T with R the reflectance 
of the system and T the transmittance into the substrate. Note 
that R and T can be calculated in the eigenmode basis [3], 
without the need of transforming the field to real space, and A 
converges quickly with increasing nb as seen in Fig. 2(a).  In 
FEM, we calculate A from a volume integration of the ohmic 
heating in the NWs.  

In Fig. 2(a), we see that the absorptance modeled with FMM 
and FEM agree to better than 0.1% relative when more than 400 
plane waves are used for FMM and when more than 100,000 
NDOF are used in FEM. With the symmetry reduction in FMM, 
we can perform the calculation on a single CPU core in 0.35 s at 
nb = 10 (441 plane waves). At the 100,000 NDOF, FEM needed 
19 s, that is, 50 times longer than FMM at the nb = 10, which 
yields a similar, better-than 0.1% convergence.  

B. Spatially resolved absorption within NWs 
Here, we consider the absorption in the region of  80 nm  in 

diameter, located closest to the axis of the 160 nm diameter 
NWs. Since we now need to resolve the absorption in the x-y 
plane, a Fourier transformation to the real space is needed in 
FMM. Due to the Gibbs effect, the convergence is much slower 
than with FEM that works in the real space to start with (note 
the difference by a factor of 7.5 in the y-axis range between Fig. 

2(a) and Fig. 2(b)). FEM has converged reasonably to within 1% 
relative already at the coarsest mesh, which requires a 5 s 
calculation time. To ascertain similar 1% convergence in FMM, 
we appear to need nb = 20 (1681 plane waves), which gives, 
when using the symmetry reduction, a calculation time of 8 s, 
beyond that needed in the FEM modeling. 

IV. CONCLUSION AND OUTLOOK 
In the above examples, FMM could achieve convergence 50 

times faster than FEM when the total absorption is calculated. In 
contrast, FEM can outperform FMM if we need to calculate 
spatially resolved absorption.  

Importantly, the unit cell size can affect the choice of method 
strongly, which we exemplify here by discussing FMM and 
FDTD. With FMM, to keep the same level of convergence, we 
expect the number of plane waves used to increase as P2 if the 
period P is increased. For a large number of plane waves, the 
time for the eigenmode solving scales roughly as the number of 
plane waves to the third power, i.e. as P6. In contrast, in FDTD, 
the number of discretization points is expected to increase 
proportionally to the volume, i.e., as P2, and in each time step, 
the values are updated at each discretization point. Hence, with 
a large unit cell, e.g., when modeling a random nanostructure 
with a large supercell, we expect the calculation time, which 
scales for FDTD as P2 and for FMM as P6, to be much lower for 
FDTD.  

We are currently performing an in-depth benchmarking of 
FMM, FEM, and FDTD. Regarding the geometry, we are 
investigating especially the effect of inclined side-surfaces, as in 
nanocones. There, we need to perform a staircase approximation 
for the geometry in FMM [8], and the calculation time increases 
with the number of staircase steps. In contrast, the calculation 
time is not expected to increase for FEM or FDTD when moving 
from NWs to nanocones. Furthermore, we are investigating how 
the system thickness, unit cell size, symmetry of the system and 
incident light; and number and type of processing layers affect 
the simulation process and results. 
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