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Abstract — Quantum cascade lasers (QCLs) are high-power 
coherent light sources in the midinfrared and terahertz parts 
of the electromagnetic spectrum. They are systems in which 
the electronic and lattice systems are far from equilibrium, 
strongly coupled to one another, and the problem bridges 
disparate spatial scales. We present our ongoing work on the 
multiphysics and multiscale simulation of far-from-
equilibrium transport of charge and heat in QCLs. 

Quantum cascade lasers (QCLs) are electrically driven, 
unipolar, coherent light sources in the midinfrared (mid-IR) 
and terahertz (THz) parts of the electromagnetic spectrum. 
In addition to being of great technological importance, 
QCLs are fascinating nonequilibrium systems that are 
typically thoroughly characterized via electrical, optical, and 
thermal measurements precisely because of their practical 
value. As a result, QCLs are excellent as model systems for 
far-from-equilibrium theoretical studies.  

Under high-power, continuous-wave (CW) operation, 
the electron and phonon systems in QCLs are both very far 
from equilibrium and strongly coupled to one another, 
which makes them very challenging to accurately model. 
The problem of their coupled dynamics is both multiphysics 
(coupled electronic and thermal) and multiscale (bridging 
between a single stage and device level). During typical 
QCL operation, large amounts of energy are pumped into 
the electronic system, of which a small fraction is given 
back through the desired optical transitions, while the bulk 
of it is deposited into the optical-phonon system. 
Longitudinal optical (LO) phonons decay into longitudinal 
acoustic (LA) phonons; this  three-phonon process is often 
referred to as anharmonic decay. LA phonons have high 
group velocity and are the dominant carriers of heat. 
Anharmonic decay is typically an order of magnitude slower 
than the rate at which the electron system deposits energy 
into the optical-phonon system. The fast relaxation of 
electrons into LO phonons, followed by the LO phonon 
slower decay into LA phonons, results in excess 
nonequilibrium optical phonons that can have appreciable 
feedback on electronic transport, population inversion, and 
the QCL figures of merit.  

Figure 1 depicts typical energy flow in a quantum 
cascade laser. While electrical transport and optical-field 
emission occur in the active region of the device and can be 
electrically controlled, thermal transport involves the entire 
large device and is only controlled via thermal boundary 
conditions that can be far from the active region. As a result, 
different stages in the active region will have temperatures 
different from one another and drastically different from the 
heat sink (see Fig. 2). The electronic temperatures are higher 
still, differing among subbands, and affecting leakage paths 
and thus QCL performance. What is needed is a multiscale 

electrothermal simulation to describe QCL performance in 
the far-from-equilibrium conditions of CW operation. 

  

 
Figure 2 shows the schematic of a typical device structure 
(not to scale). Plasmonic waveguides (cladding layers) are 
typically employed in the mid-IR. As the “depth” of a QCL 
device (dimension normal to the page) is much greater than 
its width or height, we can carry out a 2D device-level 
electrothermal simulation. What we know (i.e., can 
measure or directly control in experiment) are: bias across 
the device, electrical current, and the temperature boundary 
conditions.  

 
Typically, the bottom boundary of the device is connected 
to a heat sink while other boundaries have the convective 
boundary condition at the environment temperature (single-

 
Figure 1.  Flow of energy in a quantum cascade laser. 

 

 
Figure 2. The multiscale nature of the QCL transport problem. While 
electron transport and optical-field emission occur in the active core 
of the device and can be electrically controlled, thermal transport 
involves the entire large device and is only controlled via thermal 
boundary conditions that can be far from the active core.
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device case) or the adiabatic (i.e., zero heat flux) boundary 
condition (array case). 

 Inside the active core, we cannot a priori tell much 
about the lattice temperature, other than qualitatively 
expecting an active region hotter than the rest of the device 
because of all the transfer of energy from the electron to the 
phonon system. In the same vein, there is no guarantee that 
the electric field will be uniform across different stages in 
the active core. In fact, electric-field variation between 
stages is a staple of superlattices]. What we do know is that 
the charge−current continuity equation must hold and that, 
if we approximate the current flow as 1D through the active 
core (vertical direction in Fig. 2), then the current must be 
constant in the steady state. This key insight informs the 
algorithm used for device-level electrothermal simulation 
(Fig. 3). 
 1) Based on single-stage simulation for an assumed 
electric field F and lattice temperature TL, the latter 
coinciding with the acoustic-phonon-ensemble temperature. 
TL gives baseline phonon occupations and electron–phonon 
scattering rates. For each field F and lattice temperature TL, 
the output of single-stage simulation consists of electrical 
current density J and the heat-generation rate Q. Q is 
proportional to the rate at which acoustic phonons are 
generated by the decaying optical phonons and is easily 
recorded in single-stage simulation. By sweeping F and TL, 
single-stage coupled simulation yields a “table” that links 
(F,TL) pairs to appropriate (J,Q) pairs.   
 2) Current continuity. In the steady state, the current 
density J must be the same in every stage, so we use J as an 
input variable for the device-level simulation. Therefore we  
“flip” the table from (TL, F)  (J, Q) to (J,TL)  (Q,F), 
which can really be thought of as a series of F vs. J and Q 
vs. J curves at different lattice temperatures. The flipped 
table (J,TL)  (Q,F) is key information needed from 
single-stage simulation for device-level simulation.  
3) Heat flow through the whole device. In essence, the 
global simulation is the solution to the heat-diffusion 
equation, with each stage in the active core acting as a 
current-dependent heat source.The global heat diffusion 
equation is solved using finite elements. We do not know 
what temperature each stage might have; all we can assume 
are a current density J and certain thermal boundary 
conditions (heat-sink temperatures or convection boundary 
conditions), but we can calculate the temperature-
dependent thermal conductivity tensor everywhere in the 
device.   
 4) Putting it all together (Fig. 3). Based on single-stage 
simulation, we have created a large table of (J,TL)  (Q,F) 
maps. Then, for a given current density level J and a given 
set of thermal boundary conditions (heat sink temperatures 
or convection boundary conditions at exposed facets), we 
assume a temperature profile throughout the device (e.g., we 
could assume the whole device to be at the heat-sink 
temperature). In each stage i, the J and the guess for the 
stage temperature Ti yield the appropriate heat generation 
rate in that stage, Qi(J,Ti), based on the table. The 
temperature-profile guess Ti, heat generation rate profile Qi, 
and the thermal model yielding the thermal conductivity 

tensor everywhere are used in the heat-diffusion equation, 
which is solved via the standard finite-elements technique to 
calculate an updated temperature profile. The process is 
iterated until the obtained temperature profile agrees well 
with the imposed thermal boundary conditions. After we 
have established the final temperature profile, we read off 
the corresponding field profile Fi(J,Ti) and calculate the total  
voltage drop across the whole device, which then gives us 
an I−V curve directly comparable to experiment. 

 

 
  
 In this talk, I will overview our recent work [1-6] on the 
simulation framework capable of capturing the highly 
nonequilibrium physics of the strongly coupled electron and 
phonon systems in quantum cascade lasers and present data 
for a mid-IR QCL based on this framework. 
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Figure 3: Flowchart of the device-level electrothermal simulation. 
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