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Abstract— Use of subwavelength metastructures opens new 

degrees of freedom to control and manipulate propagation of 

light in planar waveguide devices. This advantage comes with 

the cost of increased design complexity since more parameters 

must be simultaneously optimized. Here we show how machine 

learning dimensionality reduction can be used to obtain a 

compact representation of a multi-parameter design space 

revealing the relationship between different design parameters. 

This provides the designer with a global perspective on the 

design space and enables informed decisions based on the 

relative priorities of different performance metrics. 

I. INTRODUCTION 

The field of nanophotonics has been rapidly expanding, 
both in terms of new research directions and applications, 
including optical communications, sensing, and quantum 
computing [1-3]. Within this evolution trend waveguide 
devices based on subwavelength metamaterials are becoming 
established as fundamental building blocks for integrated 
photonic devices [4]. The novel optical properties these 
structures exhibit and the possibility to tune their optical 
responses are opening new prospects for controlling flow of 
light in planar waveguide circuits. Subwavelength grating 
metamaterials have been attracting a strong research interest 
in both academia and industry and many advanced devices 
with unprecedented performance have been demonstrated, 
such as fiber-chip couplers, ultra-broadband waveguide 
devices, Bragg filters with high spectral sensitivity and 
nanophotonic waveguides with engineered anisotropy [4]. 

The design of these subwavelength devices involves the 
complex control of the nanostructured (meta)material to 
obtain the required response and the simultaneous 
optimization of a large number of parameters that are often 
strongly inter-related. Classical design approaches based on 
sequential parameter sweeps and optimizations could hence 
fall short in finding the best design due to unachievable 
computational requirements. For this reason tools such as 
genetic algorithms, particle swarm, gradient-based 
optimization, and artificial neural network are increasingly 
used to search for high performance designs by varying 
many design parameters simultaneously [5]. Design 
approaches based on these tools often focus on finding a 
single optimized design with regard to a pre-selected 
performance metric and their outcome gives little insight on 
the interplay of different design parameters in determining 
the device performance. The ability to efficiently explore and 
comprehend large design spaces is still beyond reach. 

Recently we have proposed the application of machine 
learning tools to address these challenges [6]. In this paper 
we report on the application of this strategy for the design of 
subwavelength nanophotonic devices with large number of 
parameters. We exploit dimensionality reduction to analyze 

the apparent degeneracy in a sparse set of possible designs 
with regard to a primary design objective. This provides a 
compact representation for an entire region of interest in the 
design space. At the same time, it allows the identification 
and visualization of patterns representing the interplay of 
multiple design parameters. The photonic designer can 
leverage this knowledge to obtain a global mapping of the 
design space, and balance various competing design 
requirements.  

II. MAPPING A MULTI-PARAMETER DESIGN SPACES 

The goal of our design strategy goes beyond 
identification of a single design optimized for a specific 
performance metric. We aim to create a methodology to 
explore and map the design space. We demonstrate this for a 
high-dimensional design space considering as case study a 
perfectly vertical fiber grating coupler on a silicon-on-
insulator (SOI) platform. The grating geometry is shown in 
Fig. 1. The grating period consists of two sections. The first 
section is a 220-nm-thick segment incorporating a 
subwavelength metamaterial, represented by an effective 
material index nswg [7]. The second section is an L-shaped 
block, partially etched to 110 nm to achieve high 
directionality upwards (blazing effect). This geometry can 
simultaneously ensure a good fiber coupling efficiency and 
low back-reflections, a critical aspect for vertical grating 
coupler where second-order diffraction must be suppressed. 
Each possible design is identified by a vector P = 
[L1,L2,L3,L4,nswg] including the structure dimensions L1 – 
L4 and the effective material index nswg. This defines the 
five-dimensional design parameter space to be explored.  

Our design flow comprises three main steps.  First, we 
use a global optimizer to find a collection of different “good” 
designs whose fiber coupling efficiency is above 74% at 
wavelength λ = 1550 nm (close to state-of-the-art devices). 
This is our primary performance metric. For this purpose, we 
run an in-house line-search optimizer with random initial 
guess, albeit other global optimization tools such as genetic 
algorithm and particle swarm can also be used. In the second 
step we apply the dimensionality reduction technique within 
the unsupervised machine learning toolbox, to find the 
relationship between these good designs. Specifically, we use 
the principal component analysis (PCA), an unsupervised 
machine learning pattern recognition technique that has been 
used widely and successfully across various engineering and 
science disciplines and is implemented in most scientific 
computing platforms [8]. PCA is a linear technique that 
transforms a set of correlated variables into a smaller set of 
orthogonal variables that retain most of the original 
information. If a lower dimensional sub-space is found and 
validated to contain all good designs, the rest of the design 
space can be excluded from further investigations. This 
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results in a reduction of both the number of parameters and 
the range of values that have to be evaluated.  

From the collection of good grating designs obtained in 
the first stage, 5 different designs are sufficient for PCA to 
reliably reveal a two-dimensional subspace that contains all 
possible designs with state-of-the-art coupling efficiency. 
This means that a large part of the design space is no longer 
relevant and it can be excluded from further investigation.. 
The sub-space of all good designs is defined by two principal 
components, V1αβ and V2αβ and a constant vector Cαβ 
defining the reference origin. A good design candidate k can 
now be represented through two coefficients α and β as 

𝐏k = αk𝐕1αβ + βk𝐕2αβ + 𝐂αβ.                   (1) 

This reduction from 5 initial parameters to 2 coefficients 
makes it feasible in the third and last step to adopt a more 
conventional design approach and perform an exhaustive 
exploration of the reduced parameter space, the α-β 
hyperplane. Any performance criteria can now be evaluated 
for all the designs included in the lower-dimensional sub-
space with a few hundreds of simulation runs. Specifically, 
by mapping fiber coupling efficiency across the hyperplane, 
we discover a large and continuous area comprising all the 
good grating designs with coupling efficiency above 74%, 
including the sparse set of designs discovered through 
optimization in step 1. Despite being very different in their 
geometry, all the designs offer a similar high coupling 
efficiency, above 74%.  

On the other hand, when back-reflections are considered 
and evaluated across the same continuous area, substantial 

differences in performance are discovered. For some of the 
grating designs back-reflections are as low as -40dB while 
for other parameter selections they increase almost to -15dB. 
This information is of fundamental importance for coupling 
to a laser. 

Another important design aspect of the grating coupler is 
the minimum feature size. In order to ensure compatibility 
with large-volume production based on deep-UV 
lithography, minimum feature size should not be preferably 
smaller than 100 nm. This information can be easily 
retrieved through a query process computing equation (1) 
through the hyperplane without performing any additional 
photonic simulations. Across the area of good designs, 
minimum feature size changes dramatically and for some 
gratings it is a low as 40 nm. On the other hand, a sub-area of 
good designs is identified within which all the designs have a 
minimum size larger than 100 nm for each of the grating 
sections.  

III. CONCLUSION 

We have introduced a new design strategy leveraging 
machine learning technique to address arising challenges in 
nanophotonic design such as handling highly-dimensional 
design spaces and strongly inter-related parameters. 
Dimensionality reduction is used to reduce a large number of 
correlated design variables to a smaller set of orthogonal 
variables, significantly simplifying the design problem. This 
way, exhaustive mapping of design space can be achieved 
with modest computational resources. Multiple performance 
metrics can be quickly investigated, mapped and clearly 
visualized. This results in an intuitive understanding that 
gives the designer guidance to navigate the complex design 
space and make informed choice on the best final design. 
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Fig. 1. Schematic representation of the vertical fiber grating coupler. 
The first section incorporates a subwavelength grating metamaterial, 

represented with an effective refractive index. 
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