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Abstract—Green’s function integral equation methods are 
presented that can be applied for modeling of optical devices in 
cases where the problem can be formulated as a scattering 
problem. The methods are applied to study in three dimensions 
the effect of a cylindrical micro-lens on radiation emitted from 
a THz photoconductive antenna, and for studying the effect of 
scatterers on the front-side of thin-film silicon solar cells with 
the aim of increasing the solar cell efficiency.  

I. INTRODUCTION 

Green’s function integral equation methods (GFIEMs) in 
optics or electromagnetics are concerned with finding 
solutions to Maxwell’s equations by solving integral 
equations [1], and are suitable for modeling of optical device 
problems that can be formulated as a scattering problem. The 
starting point is a reference structure, where the properties are 
governed by a Green’s function or Green’s tensor, Gሺr,r′ሻ, 
which gives (in this paper) the electric field at a position r due 
to a point source at a position rᇱ.  In addition, a known 
reference field, E଴ሺrሻ, is considered, which is a solution for 
the electric field in the reference structure. This field may, for 
example, correspond to the field generated by an antenna or 
any given current sources, or it can be the resulting field 
solution when the reference structure is illuminated e.g. by a 
plane wave or a Gaussian beam. The GFIEMs consider the 
case where the reference structure is modified by introducing 
a scattering object. For positions outside the scatterer the 
methods give the resulting total field as the sum of the 
reference field and a scattered field. The Green’s function can 
be chosen to satisfy for example the radiating boundary 
condition or other boundary conditions exactly. The 
computational domain is often very small since it is sufficient 
to discretize either the inside or the surface of the scattering 
object depending on whether volume integral equation 
methods or surface integral equation methods are considered. 
Contrary to other popular methods, such as the Finite-
Element-Method or Finite-Difference-Time-Domain method, 
it is not necessary to discretize a region outside the scatterer, 
and not necessary to use additional resources on boundary 
conditions. For example, you do not need a perfectly matched 
layer since boundary conditions are already taken care of via 
the choice of Green’s tensor. 

In this short paper we consider GFIEMs for two examples 
of optical device problems, namely for studying the effect of 
a cylindrical micro-lens on the emission from a THz 
photoconductive antenna [2], and for studying the optics of 
thin-film silicon solar cells with scatterers on the front-side [1, 
3]. In the first case the lens (scatterer) can be designed to  
reduce coupling of radiation into guided modes of a thin film, 
and thus improve the extraction efficiency, and further it can 
be designed to also collimate the radiation into a pencil-beam. 
In the latter case the purpose of the scatterer is the opposite, 
since here coupling of light into guided modes of the thin-film 
geometry should be increased instead in order to improve the 
absorption of light in the thin-film solar cell.   

II. CYLINDRICAL MICRO-LENS FOR THZ PHOTONICS 

As a first example we consider a geometry from Ref. [2] 
(see schematic in Fig. 1) with a THz photoconductive antenna 
placed on the back-side of a semiconductor slab of thickness ݐ ൎ  m and refractive index 3.418 (silicon). The width ofߤ	400
the slab is treated as infinite. For such a reference geometry 
the Green’s tensor is known analytically in terms of certain 
integrals [1]. The antenna is modeled simply as an oscillating 
electric dipole with dipole moment pointing in the x-direction 
and with a frequency of 1 THz (wavelength 300 ߤm). In that 
case the reference field is itself directly given from the Green’s 
tensor with r′ at the position of the dipole. On top of the slab 
a cylindrical micro-lens lens is placed consisting of a bottom 
semiconductor cylinder with radius r and thickness h, and with 
another glass cylinder on top of the same radius and thickness 
a. The glass layer gives an antireflection effect.  

 

Fig. 1. Top: Schematic of a dipole antenna (1 THz) and a cylindrical micro 
lens on front- and backside, respectively, of a semiconductor slab of thickness 
app. 400 ߤm. The lens consists of a semiconductor cylinder of radius 200 ߤm 
and thickness 55 ߤm, and with a glass cylinder on top of thickness 40 ߤm. 
Bottom: radiation patterns for the cases with and without the lens.The total 
emitted power including also into guided modes is normalized to unity. 

In the absence of the lens the geometry consists of only the 
semiconductor slab (dielectric constant ࢿrefሺrሻ). As the lens 
(scatterer) is added the resulting total electric field, Eሺrሻ, can, 
for example, be found by solving the volume integral equation Eሺrሻ ൌ E଴ሺrሻ ൅ නGሺr,r′ሻ݇଴ଶ൫ࢿሺrᇱሻ െ  ,′ݎrefሺrᇱሻ൯∙Eሺr'ሻ݀ଷࢿ

            (1) 
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where ࢿሺrሻ  is the dielectric constant of the total structure 
including lens and slab, and ݇଴ is the free-space wave number 
corresponding to 1 THz. The integral equation (1) expresses 
the total field as the sum of the reference field and a scattered 
field, where the latter propagates away from the scatterer (the 
lens in this case) due to the properties of the Green’s tensor. 
Note that Eq. (1) can be solved by considering at first only 
positions r that are inside the lens, since ൫ࢿሺrᇱሻ െ  refሺrᇱሻ൯ࢿ
vanishes for positions rᇱ  that are outside the lens. The 
computational domain is thus very small with this method. In 
addition, it is possible to exploit cylindrical symmetry when 
solving Eq. (1) and effectively reduce the computational 
problem from a 3D problem to a 2D problem [1]. 
Alternatively, if a surface-integral equation method is applied 
instead, and this is combined with taking advantage of 
cylindrical symmetry, it is even sufficient to discretize in only 
one dimension [1]. The different variants of GFIEMs will be 
discussed in more detail at the conference. 

 Once the electric field has been calculated inside the lens 
Eq. (1) can be applied to calculate the field at any other 
position by direct integration. In particular, the far-field, and 
thereby also the Poynting vector in the far-field region, are 
easily obtained by using a simple analytic far-field 
approximation to the Green’s tensor [1]. This leads to a 
calculation of the differential emission being the emission per 
unit solid angle for different directions in the far-field. The 
differential emission from the antenna is shown in Fig. 1 for a 
case with and without a lens both as 3D radiation patterns and 
versus the angle θ in the yz-plane. In both cases the total 
radiated power from the antenna, which also includes 
radiation trapped in the semiconductor slab, is normalized to 
unity. The lens as designed in Ref. [2] is extremely compact 
with a radius of 200 μm and a total thickness of 95 μm. 

 In the lens geometry the emission is predominantly going 
into directions near the z-axis in the upper half-plane (pencil 
beam), while in the case without a lens almost the same 
amount of radiation goes into the lower half-plane as into the 
upper half-plane. In the case without a lens the shape of the 
radiation pattern is, however, rather sensitive to the slab 
thickness. Without the lens a much higher fraction of emitted 
radiation will be trapped in guided modes in the 
semiconductor slab, which explains the small differential 
emission in that case [2]. In addition, the lens is seen to 
collimate the light.  

III. SCATTERING INTO A THIN-FILM SILICON SOLAR CELL 

The second example that we will consider is a 50 nm layer 
of (amorphous) silicon on silver. This represents from an 
optical point of view a thin-film silicon solar cell. A 
cylindrical silicon scatterer of radius 30 nm and height 25 nm 
is placed on top of the solar cell (schematic in Fig. 2). The 
structure is illuminated by a normally incident plane wave, 
which leads to scattering out-of-the plane, and scattering into 
guided modes of the silicon-on-silver geometry. This problem 
can also be modeled using Eq. (1). The excitation of guided 
modes is calculated by dividing the far-field Green’s tensor 
into components that govern the excitation of s- and p-
polarized guided modes and out-of-plane propagating 
radiation [1]. In order to make a clean calculation of the 
contribution from each mode the absorption in silicon and 
silver is neglected. Light can be scattered into guided modes 
with both s- and p-polarization. For the present case the p-

polarized guided mode is a type of mode bound to the silicon-
silver interface, which is known as a surface-plasmon-
polariton (SPP). From Fig. 2 it is clear that the main 
contribution to the scattering peak near the wavelength of 
1000 nm is due to the scattering of light into the SPP. The s-
polarized guided mode is an ordinary waveguide mode, which 
only exists for wavelengths below app. 1000 nm. Scattering 
into this mode is much smaller compared with the SPP (in this 
example). The scattering cross section (Fig. 2) is scattered 
power normalized with incident power per unit area. 

 
Fig. 2. Scattering cross section spectrum for light normally incident on a 
geometry with a cylindrical scatterer (radius 30 nm and height 25 nm) on top 
of a 50-nm-silicon-film-on-silver waveguide. The scattering cross section is 
divided into contributions s- and p-polarized guided modes, and out-of-plane 
scattering.  

 
The scattering peak nearly coincides with the cut-off-
wavelength of the s-polarized guided modes, and the 
wavelength of the peak is thus more a property of the 
waveguide than a property of the scatterer. The wavelength 
can be tuned by changing the thickness of the silicon film. The 
idea is that without a scatterer most of the incident light is 
reflected back out of the solar cell at wavelengths with weak 
absorption. However, light scatterered into guided modes will 
propagate long distances in the solar cell which increases the 
probability of absorption, which is a possible approach to 
improve the efficiency of thin-film solar cells.  

IV. SUMMARY 

To summarize, a range of GFIEMs have been described that 
can be applied for modeling of optical devices in cases where 
the problem can be expressed as a scattering problem. The 
methods were applied for studying radiation patterns from a 
photoconductive THz antenna and for scattering of light into 
a thin-film silicon solar cell. Further discussions of GFIEMs 
and device modeling will be presented at the conference. 
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