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Abstract—Although research relies heavily on software pack-
ages such as mathematical libraries or data analysis tools, efforts
to provide high-quality scientific software are hardly rewarded.
As a possible way out of this dilemma, project skeletons can
be employed to accelerate software development while ensuring
code quality. In this work, we review existing project skeletons
and present a skeleton template for a C++ library with Python
bindings as an example.

I. INTRODUCTION

A common dilemma in science is that research relies heavily
on software packages such as mathematical libraries or data
analysis tools, but it is hard to get funding for developing
and maintaining such packages [1]. While the latter efforts are
hardly acknowledged, they are prone to consume a lot of time.
This is underlined by the amount of published literature on
best practices in software engineering in general (for example,
the influential “Pragmatic Programmer” [2]) and in scientific
contexts in particular (e.g. [3]–[5]). Naturally, apart from time
the tasks require knowledge in software engineering which
may constitute a considerable barrier for scientists from other
fields than computer science [1], [5]. There are development
guidelines and best practices guides (e.g., those published by
the German Aerospace Center (DLR) [6] and the Netherlands
eScience Center [7]), which give scientists valuable recom-
mendations. However, they are intentionally kept general to be
applicable to as many software projects as possible. Therefore,
if one wants to create a certain project, the implementation of
best practices must be carried out from scratch for the given
programming language, which is tedious and time-consuming.
It would be more advantageous if those repetitive setup tasks
were automatized to reduce the time and knowledge required.
In this context, ready-to-use project skeletons would allow
scientists to focus on the actual implementation, which is
typically a formidable challenge on its own.

II. REVIEW OF EXISTING PROJECT SKELETONS

We focus on three exemplary projects: a C++ project repre-
senting software projects that base on a compiled language, a
Python project as an example of an interpreted programming
language, and a LATEX project that stands for miscellaneous
software. Due to the complex compilation and linking process
of C++, a quite intricate project skeleton is required. Several
approaches are publicly available, out of which we consider
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TABLE I
OVERVIEW OF BEST PRACTICES IN SOFTWARE ENGINEERING FOR

SCIENTIFIC PROJECTS. FOR EACH BEST PRACTICE AND PROJECT TYPE,
ONE POSSIBLE IMPLEMENTATION IS LISTED. THE ASTERISK DENOTES OUR

SUGGESTED ADDITIONS. ADAPTED FROM PREVIOUS WORK [10].

Best practice C++ [8] Python [9] LATEX*
Version control system git
Collaboration platform GitLab, GitHub

Workflow GitLab Flow, GitHub Flow
Code formatting tool clang-format black* latexindent
Static code analysis clang-tidy pylint* lacheck

Use open file formats e.g., JSON, CSV, HDF5
Open-source libraries e.g., FFTW, GNU Scientific Library

Continuous integration gitlab-ci, Travis CI
Build automation CMake not req. CMake

Function reference Doxygen Sphinx docstrip
Documentation Markdown reStructuredText LATEX

Unit test framework Catch2 PyTest not req.
Code coverage report gcov* Coverage.py* not req.

Deployment conda* PyPI ctan
Online documentation GitLab Pages, GitHub Pages

the work in [8] as the most complete solution. For Python
projects, we found the skeleton in [9] very helpful. Finally, we
could not find a skeleton for LATEX projects yet. Table I gives
an overview of the implemented best practices and possible
implementation candidates for the three projects.

III. C++ LIBRARY/PYTHON INTERFACE SKELETON

Rather than considering C++ and Python projects separately,
we turn our attention towards a combination of the two. In
scientific computing, such a combination is quite common as
it combines the computational performance of C++ with the
flexibility and brevity of Python. Basically, there are two ways
to realize such a combination: either Python code is annotated
(e.g., using Cython) in order to create a C/C++ extension
automatically, or a Python interface is generated automatically
from a C++ library. In recent work, we chose to do the
latter with the help of the SWIG project and found that the
required build steps are quite complex. As no project skeleton
was available, we decided to develop bertha, an open-source
skeleton for C++ libraries with Python interface [10]–[12].
Currently, this skeleton implements all key elements in Tab. I
using the candidates for C++. This alone would make bertha
the most comprehensive project skeleton for a C++ project.
Additionally, the required steps to build and install a Python
interface module have been implemented. The deployment is
enabled with the help of a conda feedstock [13].

NUSOD 2020

978-1-7281-6086-3/20/$31.00 ©2020 IEEE 111



Fig. 1. Creating an instance of bertha on GitHub. On bertha’s project page [11], click on “Use this template” and enter the desired owner, repository name,
and project description. The button “Create repository from template” will then create the instance. Reprinted from M. Riesch et al. [10] (CC BY 4.0).

IV. CREATING AN INSTANCE OF THE PROJECT SKELETON

GitHub provides a simple mechanism to share a certain
repository as a project template. After enabling this mechanism
in the repository’s settings, other users can generate a project
based on the skeleton repository. Figure 1 describes the steps
required to create a new instance of a skeleton. By following
those steps using the bertha template, we created a software
project for the simulation of rapidly tunable Fourier domain
mode-locked (FDML) fiber lasers [14], [15]. It should be noted
that the ongoing efforts are not going to be published in the
near future. This, however, is allowed by the permissive license
of the skeleton. The FDML simulation tool requires several
third-party packages, e.g. scientific libraries (FFTW, GNU
Scientific Library, etc.), and libraries for storing output data
(HDF5). Those dependencies are conveniently installed using
conda and are detected by the CMake build system. Another
use case for the bertha skeleton is mbsolve [16], [17], an open-
source solver for the Maxwell-Bloch equations [18]. Here, the
software project existed before the skeleton, which we used
as reference implementation or best practice guideline.

V. CONCLUSION

In the contribution at hand, we have reviewed the state of
the art in project skeletons that facilitate the implementation
of good software engineering practices in scientific software
projects. For the important use case of a C++ library with
Python bindings, we have presented our own skeleton along
with two current use cases. There are, however, various types
of software projects without a corresponding project skeleton.
For example, a skeleton for a LATEX project would facilitate
the collaboration between researchers in the scope of scientific
publications, and foster the use of so-called stock image
projects [19]. In the scope of future work, such a skeleton
shall be developed.
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