
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Machine Learning for Optimization of Mass-
Produced Industrial Silicon Solar Cells  

Hannes Wagner-Mohnsen1,2 and Pietro P. Altermatt3 
 

1Dep. Solar Energy, Inst. Solid-State Physics, Leibniz University of Hannover, Appelstr. 2, 30167 
Hannover, Germany 

2WAVELABS Solar Metrology Systems GmbH, Spinnereistr. 7, 04179 Leipzig, Germany 
3Trina Solar, State Key Laboratory for Photovoltaic Science and Technology (SKL), No 2 Trina Road, 

Xinbei District, Changzhou, Jiangsu Province, China 213031 

Abstract— We present a methodology where we combine 

numerical TCAD device modeling, machine learning and 

advanced statistics for getting a deeper understanding of how 

process variations influence device performance in mass produced 

crystalline silicon solar cells. For this, we use seven model input 

parameters that affect the mainstream solar cell design (PERC) 

and its performance the most and perform about a couple of 

hundred numerical TCAD device simulations in an expected range 

of these parameters. As such detailed numerical simulations take 

long time, we train and validate machine learning models on these 

simulations, which serve to describe ten thousands of fabricated 

PERC cells. The method gives concrete information for improving 

PERC cells with a modest amount of numerical modeling and 

hence in a very short time. This approach is not limited to a 

specific solar cell design or product.  
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I. INTRODUCTION 

In mass fabrication of silicon solar cells, statistical 
fluctuations and variations in the manufacturing tools lead to 
scattering of resulting cell performance. Analyzing how these 
relate to each other [1, 2], gives two useful insights. First, a 
better process control by evaluating which variations in which 
manufacturing tools lead to the most performance degradation, 
and second, indications of how to increase the median cell 
performance. Generally, process control can be improved by 
either reducing entropy, for example by tracking each wafer 
through the production line, or by maximizing entropy, for 
example by shuffling the wafers so a statistically identical set of 
wafers goes through the fabrication lines, and underperforming 
tools can then be located by statistical analysis. Most cell 
manufacturers nowadays do not track the wafers through their 
production lines because this is regarded an expensive way of 
process control [3]. Instead, each manufacturing tool is 
monitored separately to keep the tool parameters within 
specified limits. This gives some extent of process control, but 
it is not known at what time which wafer went through which 
tool. This means that no direct learning is possible for how to 
reduce scattering of cell performance and how to improve the 
median cell performance.  

In this paper, we create a digital twin of produced cells by 
numerical TCAD device simulation, and we find reasons for 
underperforming or best performing cells in terms of device 
parameters rather than parameters in manufacturing tools. Once 
the responsible device parameters are known by the analysis, it 
is straight forward to conclude to the behavior of fabrication 
tools because PERC fabrication consists of only 9 steps. 
Because a specific device performance can be attained with 
different sets of device parameters, we apply a machine learning 
algorithm for categorizing these possible sets. From such 
categories, we deduce which manufacturing tools are the most 
likely reasons for underperforming or best performing cells.  

 

II. METHODOLOGY 

We use Sentaurus TCAD to model the PERC solar cell. We 
vary seven simulation input parameters that effect device 
performance most.  
Each detailed Sentaurus simulation take approx. 30 min, too 
long to describe massive data sets. For example, a single work 
shift produces about 37’000 cells on a line, and Trinasolar 
produced 2.5 billion cells last year. We therefore use only about 
500 Sentaurus simulations as training for a machine learning 
algorithm. The trained machine learning algorithm is then very 
quick to calculate almost the same output (e.g. Efficiency η or 
open-circuit voltage Voc) with the same seven input parameters. 
To test the approximation quality of these models, we perform 
a 5-fold cross validation and observe the smallest root-mean-
square error (RMSE). In our case a Gaussian process regression 
model (with rational quadratic kernel function) has the lowest 
RMSE values of 0.026 mA/cm2 for the short-circuit current 
density Jsc, 0.372 mV for Voc, 0.017% for the fill factor of the 
IV curve, FF, and 0.018% for the energy conversion efficiency 
η. 
The trained machine learning model is then used to generate a 
massive data set of 7 x 109 random combinations of the seven 
input parameters. From this data-set, optimal parameters are 
derived to describe each solar cell by using Euclidean distances.  
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III. RESULTS 

Figure 1 shows the energy conversion efficiency distribution 
from a typical, new PERC cell factory in China. The blue 
symbols are the IV parameters of about 32,000 cells from a 
single labour shift in a mass production line. The machine 
learning (ML) results of the 10% cells with the lowest, medium 
and best efficiency η are shown in the traffic light colours. 

 

 

FIG. 1. 32’000 experimental IV parameters of a typical new 
PERC factory in China (blue symbols), with the machine 
learning (ML) results of the 10% cells with the lowest, medium 
and best efficiency η are shown in the traffic light colors. 

 

Figure 2 shows that the most efficient cells (green) can of 
course only be achieved with high lifetime (low interstitial iron 
concentration, Fei), but interestingly also with the lowest emitter 
sheet resistivity (Rsheet). This implies that for further efficiency 
improvements, the front finger pitch must be reduced (more 
fingers added per cell), as confirmed by a cross-check with low 
FF values (not shown here). 

 

FIG. 2. Corresponding simulation input parameters to modelled 
data points in Figure 1, from machine learning, of the emitter 
sheet resistivity over the concentration of interstitial iron, 
limiting the excess carrier lifetime. Same colors as in Fig. 1. 

Both parameters influence for collection efficiency of minority 
carriers, and therefore the cells quantum efficiency.  

 

 

FIG. 3. Corresponding simulation input parameters to modelled 
data points in Figure 1, from machine learning, of the SRH 
recombination velocity at the front surface over the rear surface. 
Same colors as in Fig. 1.  

  

It may follow from Fig. 2 that emitters with higher Rsheet may 
not have sufficient surface passivation. This is refuted in Figure 
3, which indicates that good front (and rear) surface passivation 
is achieved in high-efficiency cells.  

IV. CONCLUSION AND OUTLOOK 

 

A methodology is presented to understand and minimize the 
efficiency variations in the mass production of PERC solar cells. 
We do this with end-of-line IV parameter data alone, i.e. without 
knowing at what point the cells went through which 
manufacturing tools, which in turn have their own variations. In 
mass production, it is important to monitor whether the front 
finger pitch and Rsheet of the emitter are well tuned, and to what 
extent variations in Rsheet cause variations in efficiency. Equally 
important is to monitor that the front and rear passivation is 
maintained at high levels, even when the Rsheet of the emitter is 
high. Without this methodology, experimental series within the 
mass production would need to be performed to find this out. 
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