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Abstract—We present simulations for a THz cross-correlation
spectroscopy (THz-CCS) optical system. The aim is using com-
pressed sensing (CS) to reconstruct the THz signal from a random
under sampling of the signal and potentially replacing a delay
stage unit of the THz-CCS system to increase robustness and cost-
effectiveness of the optical system. We present results from using
the CS to attempt to reduce the number of samples required to
interpolate the THz signal in question. We compared Shannon-
Whittaker interpolation to CS reconstruction in a multitude of
basis. We conclude that within the current implementation of
CS Shannon-Whittaker interpolation beats CS for our simulated
THz signal. We have however only just begun to explore the
multitude of potential CS implementations for THz spectroscopy
systems and see a host of additional explorations to be conducted
in the near future.

I. INTRODUCTION

A key technological field for modern engineering and
physics is emission and detection of electromagnetic (EM)
radiation. Different frequency regimes necessarily need differ-
ent devices for such task. Below 300 GHz devices based on
alternating currents are used, but prove obsolete above such
frequencies. Above 40 meV (10 THz) lasers and light diodes
are common as emitter devices, furthermore photon energies in
this regime are high enough for detected matter interaction [1].
But above 300 GHz and below 10 THz emission and detection
setups are typically expensive and unfit for most practical uses.
This technical challenge has historically limited the ability of
THz technology to become widespread across multiple fields
of science and industrial applications. Today, THz technoloy
therefore holds a huge, untapped potential. One potential THz
technology platform that holds great promise is THz cross-
correlation spectroscopy (THz-CCS) [2].

In this work we use compressed sensing (CS) on a THz CCS
optical system in order to explore the potential for optimizing
the speed and flexibility of the system. The optical setup
and a phenomenological illustration of the working principle
for detection can be seen on fig. 1. The broadband (BB)
source is split into an emitter arm and detector arm where
a delay line probes the signal. The source is a BB continuous
source, which constitutes a considerable cost-effectiveness
improvement from other THz time-domain spectoscopy (THz-
TDS) systems using femto-second mode locked lasers. The
measured signal is sampled at the Whittaker-Shannon-Nyquist

Fig. 1. Optical setup for a THz-CCS system with a phenomenological
illustration of the working principle of THz-CCS. A broadband source is used
to generate continuous wave incoherent light which is split into a detector arm
with a delay line and an emitter arm with a photoconductive antenna (PCA)
emitting continous THz light. The THz light is passed through a sample or
air and the detector detects a THz time-signal as a function of the time-delay
from the delay-stage

rate such that Shannon-Whittaker interpolation can be used
to reconstruct the signal. The signal is furthermore Fourier
transformed and features from the sample can be extracted
with both phase information and spectral amplitude informa-
tion. Furthermore we investigate schemes for undersampling
the signal in pursuit of long term finding alternatives to the
delay line scheme as such component either limits size and
portability of the full THz-CCS system or reduces robustness
of the system considerately, both being unfavourable for a
broadly applicable system. We simulate the THz-CCS system
with both single delay line as in fig. 1 and multiple delay
lines as this seeks to potentially improve performance of CS
signal reconstruction. A multitude of different potential sparse
basis are examined for reconstruction of the signal with respect
to the degree of undersampling. The results are compared
to Shannon-Whittaker interpolation for the same degree of
sampling.
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II. RESULTS

In Fig. 1, a conventional CCS system is illustrated. This is
modelled in a numerical simulation in Python, where a model
of a C-band Amplified Spontaneous Emission (ASE) source,
is used as the broadband source. The analytical expression for
the resulting current in the antennas [4] is then used to create
the resulting signal, which we choose to calculate as a 128-
point vector, which we normalize, so the highest value of the
vector is 1.

We now used compressed sensing, to recreate the signal.
We choose to use the originally proposed Compressed Sensing
model [3], instead of LASSO regression, as is commonly used.
This is a more strict constraint. As we only have a single
delay line, our measurement matrix has only a single non-
zero digit per row, and that digit is of course 1. In order
to maximize incoherence between the measurement and basis
changing matrix, these 1’s on each row are randomly placed.
The discrete basis changing matrices, were chosen as the two
most used in the current literature, which is the sine and cosine
transforms, and a subset of the classical orthogonal polyno-
mials (Chebyshev and Legendre). The Hermite, Laguerre and
Canonical polynomial transforms, were not considered as these
have numerical convergence issues. This is most likely due to
them being too coherent, with our measurement matrices.

As each measurement matrix is random, the recreations
vary, and the RMSE (Root-Mean-Square Error), between the
recreation and the true signal, also varies. The signal is
therefore recreated 100 times for each sample point, and the
RMSE is calculated between each of these and the true signal,
and the average RMSE is then calculated. This is pictured
in Fig. 2 (a). The RMSE of the Whittaker-Shannon-Nyquist
interpolation (Sinc interpolation) and the true signal, is also
pictured in Fig. 2 (a), as a comparison. Note that none of
the basis transforms is able to outperform, that is, reach
zero RMSE for number of sampling points, before the Sinc
interpolation. We note that the RMSE is initially lower for the
compressed sensing, than for the Sinc interpolation. This is
due to them being more noisy, and thereby being on average
closer to zero.

Fig. 2 (b)-(c) respectively include the minimum amount and
an insufficient amount of sample points, needed for the Sinc
interpolation.

As each RMSE valued calculated for Fig. 2 (a), is an
average of 100 recreations, it is also possible to calculate
the standard deviation associated with each RMSE. This is
pictured in Fig. 2 (d), for the discrete sine transform, together
with the RMSE of the Sinc interpolation. We again do not beat
out Whittaker-Shannon-Nyquist, even with the best random
measurement matrices. We however note, that there indeed is a
large difference between ”lucky” and ”unlucky” measurement
matrices, leading to respectively ”good” and ”bad” recreations.
This is an often overlooked fact in Compressed Sensing
applications.

In conclusion, conventional compressed sensing basis, that
has seen great results in other fields, does not beat out the

Fig. 2. (a) RMSE (Root-Mean-Square Error), of conventionally used basis in
Compressed Sensing (CS), and RMSE for the Sinc interpolation, for a 128-
point signal. As each measurement matrix for a simulation is random, the
RMSE for each number of sample points is an average of 100 simulations.
The RMSE for the Sinc interpolation becomes positive after reaching zero due
to the numerical integer rounding of indices when taking evenly spaced points.
(b) Sufficiently sampled Whittaker-Shannon-Nyquist (Sinc) interpolation. (c)
Insufficiently sampled Whittaker-Shannon-Nyquist (Sinc) interpolation. Note
that there is only one less sample point than in (b). (d) RMSE of the
Sine transform, and its associated standard deviation, as a result of the 100
simulations. Also pictured is the RMSE of the Sinc interpolation.

Whittaker-Shannon-Nyquist interpolation when considering
THz Spectroscopy. However more advanced CS methods, such
as utilizing specifically created basis, hold great promise for
further exploration in the near future.
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