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Abstract—Non-Markovian noise degrades the coherence prop-
erties of semiconductor lasers and contributes significantly to
broadening of the linewidth. Since modeling of such colored noise
systems from first principles is not accessible, we aim for a data-
driven modeling approach in which a system of stochastic rate
equations shall be reconstructed from time series data.

I. INTRODUCTION

Semiconductor laser diodes are core elements of many
important technological applications including coherent com-
munication, optical sensing, frequency metrology and spec-
troscopy. Central to these applications is the spectral co-
herence of the emitted radiation, which is quantified by its
frequency fluctuation spectrum or alternatively the laser’s
spectral linewidth. In the ideal quantum-limited case, the
fluctuations in the optical field are dominantly driven by
spontaneous emission of photons into the laser mode, which is
well described as white noise and gives rise to the well-known
(modified) Schawlow–Townes formula for the linewidth. In
real devices, however, additional noise sources come into
play (e.g., recombination noise, absorption fluctuations, ther-
mal noise, mechanical vibrations etc.), which can lead to a
considerable reduction of the spectral coherence. A prominent
feature observed in experimental noise spectra is a power-
law type behavior dominating the noise at low frequencies
(1/f noise, “flicker noise”), whose origin is not yet fully
understood. Such colored noise contributions are characterized
by stochastic processes with correlated increments and in
general lead to a broadening of the laser’s spectral linewidth.
A proper understanding of the noise in semiconductor lasers
is therefore crucial for engineering low-noise devices.

In this paper, we explore the perspectives of a data-driven
modeling approach using time-series regression techniques to
infer on stochastic rate equation models from measurement
data. To this end, we will first develop the methodology using
simulation data (based on a stochastic model described in the
following).

II. STOCHASTIC LASER RATE EQUATIONS

The standard theory of noise in semiconductor lasers is
based on a quantum mechanical treatment of the light-
matter interaction in an open quantum system described by
Heisenberg–Langevin equations [1]. The presence of dissipa-
tive processes in the open system (e.g., carrier injection, cavity

losses, recombination, polarization decay etc.) necessitates the
introduction of suitable noise operators in order to preserve
the canonical commutator relations (fluctuation–dissipation
theorem). In the case of centered Gaussian processes, the
noise is entirely characterized by its covariance matrix, which
is closely related with the diffusion matrix. In the case of
Markovian noise (instantaneous processes without memory),
the latter can be obtained from first principles via the time–
dependent Einstein relation [2]. Passing to the semi-classical
limit, one arrives at a set of stochastic rate equations (Langevin
equations) [3], which provide a consistent description of the
fluctuation characteristics of the laser.

Here we consider a single-mode laser diode described by a
set of Itô-type stochastic differential equations for the number
of intra-cavity photons P , the optical phase ϕ and the number
of carriers N in the active region given as
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Here, vg is the group velocity, Γ is the optical confinement fac-
tor, τp is the photon lifetime, αH is the linewidth enhancement
factor and I is the pump current. The (net-)gain is modeled as

g =
g0Ntr

1 + P/Psat
log (N/Ntr),
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where Ntr is the transparency density and Psat corresponds to
the gain compression coefficient. Following [4], the sponta-
neous emission coefficient is well described by

gsp =
1
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g0Ntr

1 + P/Psat
log

(
1 + (N/Ntr)

2
)
,

which provides the correct asymptotics and does not require
any additional parameters. Note that this model for gsp avoids
the introduction of the population inversion factor and tacitly
implies a state-dependent βsp-factor. The absorption coefficient
follows as gabs = gsp − g. Non-radiative recombination and
spontaneous emission into waste modes are described by
r (N), which is modeled in the usual way (ABC model).

The system (1)–(3) includes numerous stochastic processes
(associated with the respective dissipation) each modeled by
a standard Wiener processes Wk (Brownian motion). The
stochastic increments dWk describe Gaussian white noise
with infinitesimal variance dt. All white-noise sources are
independent such that dWkdWl = δk,l dt by Itô’s lemma [5].
In addition to white noise, our model includes a single colored
noise source F (t) entering Eq. (3), which acts as the origin of
1/f noise due to index and absorption fluctuations, cf. [6].

III. NON-MARKOVIAN NOISE

One of the major difficulties in understanding 1/f noise
is the inability of simple physical models to produce a 1/f
spectrum in a natural way. In spite of the omnipresence of this
phenomenon and almost a century of research on 1/f noise,
there is no commonly accepted theory explaining such noise.

Several modeling approaches exist, which give a 1/fα-
type spectrum over a sufficiently large frequency range. The
standard approach [7] is based on a superposition of Ornstein–
Uhlenbeck fluctuators

dxk = −γkxk dt+
√
2γk dWk,

where the distribution of the decay rates γk follows a power-
law. The fluctuators are combined as F (t) = σ (N)

∑
k xk (t),

where σ(N) is adjusted such that the model obeys Hooge’s
empirical law on 1/f noise [7]. Alternatively, nonlinear
stochastic differential equations [8] or fractional Brownian
motion [9] also represent viable modeling approaches.

IV. REGRESSION

We consider a laser operating in continuous wave mode,
where the fluctuation dynamics is well described by a lin-
earization of the system (1)–(3) at the steady state. Typical
measurement data for the optical field dynamics of such a laser
are obtained from self-heterodyne beat note measurements,
which give access to time series of the power and the phase.
We eliminate the equation for the carrier number (which is not
directly observable), by formally solving the linearized version
of Eq. (3) using its Green’s function. Substituting the result-
ing expression into the remaining equations for the photon
number and phase yields a system of memory-type equations
that are non-local in time in both the deterministic and the
stochastic part. Our goal is to infer on the parameters of the

Fig. 1. Statistical inference of the model parameters from times series data
(optical power and phase) using an ARIMA(p, d, q) model.

stochastic system by performing a regression analysis using
an ARIMA(p, d, q) type model [10], see Fig. 1, where the
depth of the memory kernels (and the number of parameters)
depends on the size of p and q. Given sufficiently long time
series, the model parameters can be estimated with sufficient
precision and thus the stochastic system (and the underlying
noise model) can be reconstructed to a large extent from data.

V. OUTLOOK

The regression technique developed here for the case of
single-mode stochastic laser rate equations shall be extended
towards lasers with time-delayed feedback (stochastic Lang–
Kobayashi equations) or even partial differential equation
systems (stochastic traveling wave model) in the future. Fur-
thermore, after having gained a proper understanding of the
limitations from working with simulated data, the method shall
be applied to experimental time series.
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