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Abstract—Perfectly matched layer (PML) boundary conditions
have been used for several decades for the simulation of open
domains within the finite difference time domain (FDTD) method.
In this paper, we report on a new PML-based partially reflecting
boundary condition for the generalized Maxwell-Bloch equations
that enables setting a certain value of reflectance R at the end
of the simulation domain. To evaluate the performance of the
method, we present an error analysis and simulation results of
a real optoelectronic device.

I. INTRODUCTION

The finite difference time domain (FDTD) method is a
widely applied technique for the simulation of electromagnetic
fields, and has been successfully applied in the numerical treat-
ment of the generalized Maxwell-Bloch (MB) equations [1].
For many problems, it is desirable to simulate an open domain,
which led to the development of absorbing boundary condi-
tions like, e.g., Mur’s absorbing boundary conditions [2] and
Berenger’s perfectly matched layers (PMLs) [3]. Especially,
the latter has been of great research interest in the past
decades [4]. However, in all these works, the PMLs were
used to truncate the simulation domain reflectionlessly. In this
contribution we propose a PML-based boundary condition for
the generalized MB equations that allows for setting a certain
value of reflectance R at the end of the simulation window.
With this, we address a recurring problem in optics, that
is, a domain of interest surrounded by mirrors that partially
reflect light back into the simulation domain. Alternatively, one
could model partial reflections by extending the simulation
domain with real materials, which could however lead to a
drastic increase in simulation time. To our best knowledge, no
partially reflecting boundary conditions based on PMLs have
been published so far.

II. PARTIALLY REFLECTING BOUNDARY CONDITIONS

In the following, we aim to present the implementation
of partially reflecting boundary conditions into the mbsolve
project, reported in [5]. The mbsolve project is an open-source
software tool for the numerical simulation of the generalized,
one-dimensional, full-wave MB equations. Our approach is to
truncate the simulation domain with an artificial uniaxial PML

(UPML) region [4]. However, instead of perfectly matching
the boundary region to the simulation window, we induce a
certain value of reflectance R by mismatching the relative
permeability inside the PML
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R
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√
R

)2
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where µr is the relative permeability at the end of the simu-
lation domain. The phase of the impinging field is preserved
for a positive sign in the numerator of (1). A negative sign in
the numerator leads to a phase-change of π. As the negative
case would lead to very small permeabilities, and thus stability
issues, we restrict ourselves to the phase-preserving case.
Reflections are solely introduced by µPML, while the quantum
system within the MB framework is extended into the PML.

III. ERROR ANALYSIS

To evaluate the performance of our method, an error analysis
has been conducted, where a Gaussian pulse was injected
at the left side of a vacuum simulation region. Here, no
quantum mechanical system has been considered. The pulse
had a center frequency of 500 THz and a FWHM bandwidth
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Figure 1. Absolute error for different numbers of grid points and reflectance
values. The white line depicts the Nyquist limit.
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Figure 2. (a) Relative error for different spatial discretizations for a reflectance
of R = 0.5. (b) Absolute error for different reflectance values and Nx =
11000 grid points.

of 21 %. At the right side of the region a reflectance R has
been set with the implemented partially reflecting boundary
conditions. From the fields scattered back into the simulation
domain, the reflectance R, was calculated as the inverse ratio
of the field energies before and after reflection. With a center
frequency of 500 THz the λ/20 and λ/200 limits would lie at
approximately 1 300 and 13 000 grid points. Figure 1 shows
the absolute reflection error for a varying number of grid points
in the simulation domain and different reflectances R. The
simulation results for a reflectance of R = 0.5 can be seen in
Fig. 2 (a). In Fig. 2 (b) we show the absolute error, where the
reflectance has been changed from 0 to 0.975 for 11 000 grid
points in the simulation domain.

IV. RESULTS AND DISCUSSION

From the error analysis we can identify two trends. First,
the error increases for bigger values of R. Second, a decrease
of the error is observable if more grid points Nx in the
simulation domain are chosen. The reason for this is likely
the discretization error associated with a prefactor in the
temporal FDTD update equations, which assumes a very small
value due to an increasing µPML for large R. Furthermore,
the maximum absolute error in Fig. 1 and Fig. 2(b) can be
explained by the fact that for a small number of grid points
the Nyquist sampling theorem is violated which leads to a
virtually decreased error due to artificial aliasing. The Nyquist
limit is plotted as white line in Fig. 1.

The partially reflecting boundary conditions are tested on a
well-studied quantum cascade laser (QCL) frequency comb,
reported in [6]. Full-wave simulations of the device, were
already published in [7]. With our boundary conditions we
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Figure 3. (a) Intensity spectrum of the QCL frequency comb from [6] at the
facet of the device. (b) Envelope of the electric field for three round trips. In
both plots the higher frequency components are displayed in blue, while the
lower frequency components are shown in orange.

were able to reproduce the experimental and simulation data
from the literature, as depicted in Fig. 3.

V. CONCLUSION

In this paper, we presented a PML-based boundary condi-
tion that allows to set a certain value of reflectance R at the end
of the simulation domain. By conducting an error analysis we
could validate our approach and evaluate the performance of
our method. We saw that the accuracy of the method decreases
for larger reflectances or less grid points. By simulating a QCL
frequency comb as an example of a real optoelectronic device,
we presented a first application of our method.
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