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Abstract—Recently, a multiscale framework was developed
where drift-diffusion is combined with atomistic tight-binding
models [1]. A naive flux discretization was proposed to tackle
the problem of heavily fluctuating band edge energies which does
not take into account mathematical complications. Here we would
like to present several alternatives and compare them.

I. INTRODUCTION

Random alloy fluctuations significantly affect the electronic,
optical, and transport properties of (In,Ga)N-based optoelec-
tronic devices. To bridge the gap between macroscale drift-
diffusion simulations and atomistic band-edge fluctuations,
recently a multiscale framework was developed to integrate
the macroscopic and microscopic worlds [1]. In order to
combine atomistic tight-binding theory and continuum-based
drift–diffusion solvers, it is necessary to develop flux dis-
cretizations for variable band-edge energies. While in [1] a first
scheme was formulated, flux discretizations are conceivable
which avoid the gradient of the fluctuating band-edge energies.
We present and discuss these numerical fluxes here.

II. THE VAN ROOSBROECK SYSTEM

We consider a version of the stationary van Roosbroeck sys-
tem for charge transport in semiconductors using the potential
ψ and the quasi-Fermi potentials φn and φp as unknowns:

−∇· (ε0εr∇ψ) = q (p− n+ C) , (1a)
∇ · jn = qR, jn = −qµnn∇φn, (1b)
∇ · jp = −qR, jp = −qµpp∇φp (1c)

where the electron and hole densities are defined by

n = NcF(ηn), ηn =
q(ψ − φn)− Ec

kBT
, (2a)

p = NvF(ηp), ηp =
q(φp − ψ) + Ev

kBT
. (2b)

Here µn, µp are the mobilities, Nc, Nv the effective density
of states, kB is the Boltzmann constant and T the temperature.
The difference to the standard van Roosbroeck system is that
the conduction Ec = Ec(x) and valence band-edge energies
Ev = Ev(x) are heavily spatially fluctuating. From a math-
ematically point of view, defining the fluxes in (1b) and (1c)
becomes problematic because we have to take the gradient of a
nonsmooth function since the quasi Fermi potentials depend on
the band-edge energies via (2). In order to avoid the gradient,

we can introduce a Slotboom-type variable transformation for
the Boltzmann case (F = exp) by setting

ui =
ci

Ni exp
(

zi
qUT

Ei

) , i ∈ {n, p} with cn = n, cp = p,

(3)
where we let UT = kBT

q . Formal computations lead to the
following flux for the transformed variable ui:

jui = −qµi
UT

zi
Ni exp

(
zi
qUT

Ei

)(
∇ui + ziui∇

ψ

UT

)
. (4)

This flux avoids the gradient of the band-edge energy Ei and
can therefore be used as a foundation to define a modified
system of equations which has a clear meaning, irregardless
of the regularity of Ei.

Here, we propose to adapt this strategy to general statistics
F . To do so, similar to (3), we set

ui = exp

(
ηi −

zi
qUT

Ei

)
, (5)

and formally compute the flux associated to this new variable:

jui = −qµi
UT

zi
Ni

F
(
log(ui) +

zi
qUT

Ei

)
ui

(
∇ui + ziui∇

ψ

UT

)
.

(6)
As for the flux (4), one can notice that this new expression
avoids the gradient of the band-edge energies, and could
therefore be used as a base to define numerical fluxes. Notice
that (5) coincide with (3) when F = exp, which means that
the variable transformation (5) is a natural generalisation of
the Slotboom one.

III. FLUX DISCRETIZATIONS

We use a finite volume method to discretize model (1), see
[2] for details. We focus here on the flux discretizations.

A. Discrete thermodynamic consistency

In order to ensure a reliable approximation of the van
Roosbroeck system, we require the numerical flux approxima-
tion to satisfy a discrete thermodynamic consistency property.
Such a property can be expressed from a local point of
view: vanishing currents shall lead to constant quasi Fermi
potentials. Thus, for two adjacent discretization nodes xK and
xL, corresponding to neighboring Voronoı̈ cells K and L (see
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[2] for more details), we want to have the following: If the
numerical flux vanishes, i.e.

ji = ji(ηi,L, ηi,K , ψL, ψK , Ei,L, Ei,K) = 0

then the associated discrete quasi-Fermi potentials has to be

constant, in the sense that δηi =
zi
UT

(
1

q
δEi − δψ

)
, where

δηi = ηi,L−ηi,K , δψ = ψL−ψK , and δψ = ψL−ψK . (7)

Thermodynamic consistency becomes relevant if the van Roos-
broeck system has to be coupled to more complex models and
avoids unphysical steady state dissipation.

B. Classical thermodynamically consistent approaches

In [1], in the Boltzmann regime the following flux approx-
imation was used:

ji = −qµi
UT

zi
Ni

1

h

{
B

(
− zi

δψ − δEi/q

UT

)
exp(ηi,L)

−B

(
zi
δψ − δEi/q

UT

)
exp(ηi,K)

}
,

(8)

where h = ∥xL − xK∥ and B(x) = x
ex−1 . The question

of generalising this numerical flux to other statistics arises
naturally, and can be tackled via generalized Scharfetter-
Gummel fluxes. The fluxes in the classical framework, that
is Ec = 0 [2], are good approximations and preserve the
thermodynamic consistency. Hence, using for example the
SEDAN flux [3], we obtain

ji = −qµi
UT

zi
Ni

1

h

{
B

(
δM(ηi)− zi

δψ − δEi/q

UT

)
F(ηn,L)

−B

(
− δM(ηi) + zi

δψ − δEi/q

UT

)
F(ηi,K)

}
,

(9)
where δM(ηi) = δηi − δ log(F(ηi)) is a difference in excess
chemical potentials. Note that (9) coincides with (8) in the
Boltzmann regime where F = exp.
However, as pointed out in Section II both numerical fluxes (8)
and (9) rely on the continuous expression of the flux (1b) and
(1c) where the gradient of the band-edge energy ∇Ei needs to
be computed which is problematic from a mathematical point
of view. In fact, we expect the numerical fluxes (9) to be a good
approximation of the continuous flux when δEi → 0, which
is not necessarily the case when we consider very irregular
band-edge energy profiles.

C. Exponentially-fitted approaches

Because of the previous observation, we introduce a new
discretisation of the flux, based on the Slotboom trick pre-
sented in (5)-(6). From a numerical point of view, such a
technique is inspired by the exponential-fitting scheme [4],
introduced in the framework of the finite element method.
Here, we propose a generalization of this strategy to handle
the irregularity of the band-edge energies as well as general
statistics F . Following the idea introduced in [5] to design the

“inverse activity based scheme”, we define an exponentially-
fitted numerical flux which discetize (6):

ji = −qµi
UT

zi
Ni

1

h
m(βi(ui,K), βi(ui,L)){

B

(
−zi
UT

δψ

)
ui,L −B

(
zi
UT

δψ

)
ui,K

}
,

(10)

where m(x, y) is a mean function and

βi(ui,K) =
F
(
log(ui,K) + zi

qUT
Ei,K

)
ui,K

. (11)

From a numerical point of view, the choice of m proved
to be challenging, since it has to handle the strong spatial
heterogeneity of Ei. The relevant choices seem to be the
arithmetic, geometric and harmonic averages, namely

m(x, y) =
x+ y

2
, m(x, y) =

√
xy and m(x, y) =

2xy

x+ y
.

The numerical flux (10) is devised to handle generic band-edge
energy profiles Ei, irregardless of their regularity.

IV. SUMMARY

Although the numerical fluxes (8) and (9) are natural dis-
cretizations, they rely on an ambiguous continuous expression
if the Ei are irregular. Hence, we introduce a change of
variable which leads to the new numerical flux (10). We
expect that the underlying scheme is asymptotic preserving
with respect the regularity of Ei.

Flux (8)-(9) Flux (10)
Definition of the continuous
terms

✘ ✔

Hope to show convergence re-
sult

✘ ✔

Preserve the positivity ✔ ✔

Thermodynamic consistency ✔ ✔

Manage strong
heterogeneities in diffusion
& choice of averaging
procedure

✔ ✘

Unified formulation for irreg-
ular and smooth Ei

✘ ✔
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