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Abstract—We present a finite-difference time-domain (FDTD)
technique suitable for coupling with quantum-transport solvers.
We derive first-order equations for the electric and magnetic
vector potentials and the electric scalar potential which, upon
the adoption of the Coulomb gauge, decouple into solenoidal
and irrotational equation sets and are sourced by the solenoidal
and irrotational parts of the current density, respectively. The
solenoidal electric and magnetic vector potentials obey equations
analogous to the normal curl equations for the electric and
magnetic fields, a fact we exploit to develop an effective absorbing
boundary layer used to simulate unbounded regions in a way
identical to standard FDTD. We demonstrate coupling to a simple
quantum transport technique known as the Usuki transfer matrix
technique.

I. INTRODUCTION

Time-dependent and high-frequency processes in nanoscale
electronic, optical, and optoelectronic systems are charac-
terized by the interplay between the quantum-mechanical
nature of charge carrier transport and full-wave electrody-
namics. Quantum transport is centered around the electronic
Hamiltonian and thus requires electrodynamics formulated
in terms of the gauge-dependent potentials rather than the
gauge-independent electric and magnetic fields. Unfortunately,
computational-electrodynamics techniques with potentials are
rare, and are not usually formulated with coupling to quantum
transport in mind.

In this paper, we showcase our recent work on the develop-
ment of a dual-potential (DuPo) finite-difference time-domain
(FDTD) technique for computational electrodynamics with
potentials that is suitable for coupling with quantum transport.

II. DUAL-POTENTIAL FDTD TECHNIQUE

The standard finite-difference time-domain (FDTD) algo-
rithm [1] is a popular technique for solving time-dependent
Maxwell curl equations. At its core is a system of first-order
update equations that march each component of the electric
and magnetic fields forward in time. We produce a similar
set of first-order equations for the potentials, which allows us
to adopt the FDTD framework and associated computational
advances.

The vector magnetic potential (A) and scalar electric poten-
tial (φ ) are well known and relate to the magnetic flux density
and electric field intensity as

B = ∇×A , E =−∂A
∂ t

+∇φ . (1)

However, it is also true that the electric field will admit the
Helmholz decomposition, which introduces the electric vector
potential C and another scalar potential ψ:

E = ∇×C+∇ψ . (2)

It can be shown that ψ = φ and

∇×C =−∂A
∂ t

, (3)

which looks very similar to Faraday’s law. If we insert the
Helmholz decomposition of E into Ampere’s law, we obtain

∇×∇×A = µ0J+µ0ε0
∂

∂ t
[∇×C+∇φ ]. (4)

We now introduce a quantity F that satisfies ∇×F = Jrot (the
solenoidal part of current density). After some manipulation,
we arrive at one of our final equations,

∇×A = µ0ε0
∂C
∂ t

+µ0F (5)

which looks very similar to Ampere’s law. Finally, we can
arrive at our last equation in a number of ways, including
taking the divergence of Eq. (4), which results in,

∇ ·µ0J =
∂

∂ t
∇

2
φ , (6)

which is equivalent to the normal continuity equation. We
have assumed the Coulomb gauge for each of the following
quantities: A, C, and F. Equations (3), (5), and (6) are used
for our FDTD technique. The two curl equations for A and C
depend only on F (related to the solenoidal part of the current
density). Also note that the continuity equation is uncoupled
from the curl equations and only depends on the irrotational
part of the current density.

Typically, we expect to be given a current and/or charge
density, and not F. Unfortunately, it is difficult to solve the
”inverse curl” problem, ∇×F= Jrot. Instead, define a quantity
∇ × J = U, so that (given ∇ · F = 0) we get ∇ × ∇ × F =
∇2F = U. This equation amounts to three Poisson’s equations,
which are easily solved using the successive over-relaxation
algorithm or a similar technique.

III. NUMERICAL IMPLEMENTATION

The main benefit of the dual-potential equations is that
the two curl equations for A and C are of the exact same
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form as the two curl equations for electric and magnetic fields
(Faraday’s and Ampere’s laws), which allows us to adopt the
advances in the FDTD technique for fields when dealing with
the potentials A and C. We utilize the Yee cell [1] to stagger A
and C in an exactly analogous way to E and H (put A where E
would go, and put C where H would go). All finite differences
are calculated using the central difference scheme. With our
equations from above and the central difference method, we
can calculate the time evolution of A and C in a self-consistent
loop.

A key advance in FDTD that seek to take advantage of
is the perfectly matched layer (PML) boundary condition.
This boundary condition allows one to simulate radiation
into free space from a finite region. Fortunately, a lot of
thought has already been put into developing good PMLs for
fields, resulting in the convolutional PML (CPML) that we
will be using here [2]. Since our curl equations look just
like those for fields, we can utilize the CPML formulations
that have been developed already with appropriate variable
substitutions. The details of the CPML formulation can be
found in [2], [3], but the end result is a set of coefficients and
auxilliary variables that modify the update equations (3) and
(5). The coefficients include the parameters of the fictitious
PML absorbing material such as permittivity, permeability, and
conductivity.

IV. RESULTS

For the purpose of demonstrating coupling, we connect the
DuPo FDTD code to a simple Usuki transfer matrix quantum
transport solver [4]. The transfer matrix method is equivalent
to a nonequilibrium Green’s function approach with no scat-
tering, so it is useful for testing coupling with very simple
quantum systems. Our system of choice is a nanotriangle
antenna, which can demonstrate quantum tunneling if the
gap between the two metallic triangles is small enough (≤ 1
nm) [5]. This phenomenon cannot be captured by standalone
Maxwell’s solvers.

We initialize the simulation with a current source that has
both nonzero curl and nonzero divergence, while initializing
all other quantities to zero. We expect that, after some time,
there will be a nonzero difference in φ between the two sides
of the antenna, leading to a tunneling current. We show in Fig.
1 that, indeed, eventually there is a φ difference between the
two sides and we have a nonzero tunneling current.

V. CONCLUSION

We presented our recent work on the development of
a dual-potential finite-difference time-domain technique for
computational electrodynamics with potentials that is suitable
for coupling with quantum transport. We derived first-order
equations for the electric and magnetic vector potentials and
the electric scalar potential which, upon the adoption of the
Coulomb gauge, decouple into two equation sets that are in-
dependently sourced by the solenoidal and irrotational parts of
the current density. The solenoidal electric and magnetic vector
potentials satisfy equations amenable to standard FDTD. We

Fig. 1. (Preliminary results) A difference in φ between the two sides of
the antenna (left panel) results in a tunneling current density (right panel).
Note that φ is not uniform throughout the triangle material because the
time constant (permittivity divided by conductivity) is much larger than the
simulation time in this particular simulation.

demonstrated the utility of dual-potential FDTD by coupling it
to a simple quantum transport technique known as the Usuki
transfer matrix technique and obtaining preliminary results
for a nanoantenna in the receiver mode. More details will be
presented at the conference.
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