

The impact of thermal boundary resistance in opto-electronic devices

<u>*R. MacKenzie*¹, J.J. Lim, S. Bull, S. Sujecki and E.C. Larkins</u>

School of Electrical and Electronic Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom

e-mail¹: eexrm1@nottingham.ac.uk

R. MacKenzie, J.J. Lim, S. Bull, S. Sujecki and E.C. Larkins

NUSOD 2007, Delaware 1

R. MacKenzie gratefully acknowledges the support of the **Engineering and Physical Sciences Research Council** (EPSRC), U.K.

We gratefully acknowledge the EC IST projects **FAST ACCESS** (IST-004772) and **WWW.BRIGHTER.EU** (IST-035266).

www.fastaccessproject.eu

www.ist-brighter.eu

Presentation outline

- Heat flow through structures with multiple epitaxial layers
 - > Theory of Thermal Boundary Resistance (TBR)
- Examples:
 - Example 1 Thermal conductivity of a VCSEL mirror
 - Example 2 Electron/phonon heat flux over a TBR
 - Example 3 High brightness 980nm edge-emitting laser
 - Full electro-opto-thermal simulations
 - Impact on L-I curves
- Conclusions

Thermal conductivity of superlattices

- GaAs/AlAs superlattices have a much lower thermal conductivity than one would predict from the bulk values alone.¹ (3x-10x lower)
 - Bulk GaAs/AlAs thermal conductivity = $58.4m^{-1}K^{-1}$
 - Superlattices thermal conductivity = $5.0m^{-1}K^{-1}$

- This effect is mainly due to phonon scattering/reflections at material interfaces
- TBR first observed by Kapitza (1941)²

i = incident wave r = reflected wave t = transmitted wave

[1] W.S. Capinski *et. al.*, Phys. Rev. B Vol. 59, No. 12, p.8105 (1999).
[2] Collected papers of P.L. Kapitza, Vol. 2, Pergamon, Oxford, p. 581 (1965).

R. MacKenzie, J.J. Lim, S. Bull, S. Sujecki and E.C. Larkins

NUSOD 2007, Delaware 4

How does structure size affect the conductivity?

Consider a superlattice with a period L, where Λ is the average phonon mean free path (\approx 20nm)

One can distinguish two regimes:

- 1) $L \approx \Lambda$ A bulk thermal conductivity can be used between the interfaces by placing a thermal resistance at each boundary (TBR)
- 2) $L \ll \Lambda$ The situation becomes more complicated with phonons reflecting off multiple layers and gaps forming in the dispersion relations

\succ Edge-emitting lasers fall within the L \approx A regime

What values of TBR should be used?

- Values of TBR are depend on:
 - The acoustic mismatch of the materials
 - Masses Elastic constants -> Speed of sound in materials
 - Similar to Snell's law
- The quality of epitaxial interfaces
- Layer thickness
- Exhaustive experimental characterization of the effect is not complete
 - Still no real consensus on microscopic models for TBR
- Diffuse Mismatch Model (DMM) is used in this work
 - Has shown some agreement with experiment
- Typical values ($m^{2}K/W$) : GaAs/AlGaAs $\approx 1.2x10^{-9}$, GaN/Si[1] $\approx 7x10^{-8}$, GaN/SiC[1] $\approx 1.2x10^{-7}$, AlN/Si[1] $\approx 7-8x10^{-8}$

1) J. Kuzmík et.al., J. Appl. Phys. Vol. 101, 054508 (2007).

Discretization scheme for inclusion of TBR

• The lattice heat equation is commonly solved in thermal models:

$$O_L C_L \frac{\partial T}{\partial t} = \nabla \cdot \left(k \nabla T \right) + H$$

 However, because of abrupt thermal resistances at epitaxial interfaces one must solve:

(1)
$$\left(\frac{\partial T}{\partial x}\right)_{1/2}^{3} k_{1} = k_{2} \left(\frac{\partial T}{\partial x}\right)_{-1/2}^{4}$$

 Introduce a step in temperature proportional to the boundary resistance:

(2)
$$T_{1/2}^{(3)} - T_{-1/2}^{(4)} = Rk_{I} \left(\frac{\partial T}{\partial x}\right)_{1/2}^{3}$$

 Adapted from a scheme to model discontinuities Quasi-TE modes of semiconductor waveguides^{1,2}

1) M.S. Stern, IEE Proc. Vol. 135, pp. 56-63 (1998), 2) R. MacKenzie et.al. Pss-c accepted for publication early 2007

R. MacKenzie, J.J. Lim, S. Bull, S. Sujecki and E.C. Larkins

NUSOD 2007, Delaware 7

Example 1: Structures with multiple layers

Example 2: Electron and lattice heat flux within a semiconductor slab

Slab of GaAs with a TBR at the center of it, possibly caused by defects

- Doped with 1x10²³m⁻³ donors
- Apply voltage across device
- Examine interplay of electron heat, lattice heat and TBR

Equations solved:

- Lattice heat equation
- Current continuity equation
- Energy balance equation for electrons
 - (0th-2nd moments of B.T.E. -> Hydrodynamic transport model)
- Possion's equation

Example 2: Electron and lattice heat flux within a semiconductor wire

Discrete step in lattice temperature, gradual decrease in electron temperature

Example 3: TBR in high-power edge-emitting lasers

QW material:	In _x Ga _{1-x} As
Number of QWs:	1
Front facet output power:	$P_{out} = 1 - 1.2 \text{ W}$
Device length:	2mm
Back facet coating:	0.90
Front facet coating:	0.03

- TBR introduced at each epitaxial interface
- Typical applications
 - Pumping EDFAs @ 980nm

Device simulator

Electro-thermal Model

- Bipolar 2D Drift Diffusion (DD) model 0th and 1st moments of the Boltzmann Transport Equation (BTE)
- Poisson's equation
- QW capture/escape equations the QW
- 4 temperature model for the QW
 - Electron, hole, LO-phonon and lattice temperatures
- 2D lattice heat equation
 - Heat sources derived from 2nd moment of BTE

Optical Model

- Photon rate equation
- Valance band structure calculated using 4x4 band k.p
- Parabolic band model for the conduction band
- Fermi's Golden rule used to calculate the stimulated and spontaneous emission rates
- 2D mode solver

All equations solved using Newton's method

- An increase of up to 0.3K is observed in the QW
- Injection current of 1.4A resulting in 1.2W of output power

Horizontal electron, hole , LO-phonon and lattice temperatures in the QW

- The lattice temperature is affected most by the TBR
 - Electron, hole and LO-phonon temperatures are dominated by injection current and radiative emission

Impact of TBR on QW temperature

QW Temperatures as a function of injection current

Difference in QW temperatures due to TBR

- An increase in QW temperature of up to 0.25K is observed
 - Lattice temperature affected more than that of the electron/hole/LOphonon populations

Impact of TBR on front facet power

• A decrease of up to 0.5mW in optical power is expected due to TBR

Conclusions

- Multi-layer structures
 - TBR has a larger impact on multi-layer structures
 - However, change in phonon density of states must be taken in to account when layer thickness smaller than phonon mean free path.
- Electron heat/Lattice heat/TBR interaction
 - Abrupt step in lattice temperature observed
 - Slow variation in carrier temperature over TBR
- High power 980nm ridge waveguide lasers
 - As bias current is increased -> more heat generation -> more heat flux -> TBR has a larger impact
 - TBR affects lattice temperatures more than e⁻, h⁺, LO-phonon temperatures.
 - Including TBR increases the predicted temperature of 980nm EELs by up to 0.3K
 - By including TBR a 0.5mW decrease in optical power is predicted
 - Need for more *more accurate* TBR values Ideally from experiment
 - Better numerical models for calculation of TBR are also needed