Design and optimization of a GaAs-based sub-7-μm quantum cascade laser based on multivalley Monte Carlo simulation

Xujiao (Suzey) Gao, Mithun D'Souza,

Dan Botez, Irena Knezevic

September 24, 2007

Quantum Cascade Lasers (QCLs) - Introduction

Principle:

- Quantum confinement
- > Tunneling

Applications:

- Gas sensing
- Medical
- Telecomm.

Features:

- > Unipolarity \longrightarrow Wide range of wavelengths: 3 to 160 μ m
- Cascading scheme One electron generates multiple photons

Low wavelength limit in GaAs-based QCLs Γ -X intervalley scattering Wavelength of GaAs/AIGaAs QCLs \ge 8 μ m

Goal:

Design and optimize a novel GaAs QCL structure to emit below 7 μ m with no penalty in device performance

Deep-active-well 6.7 μ m GaAs QCL

State-of-the-art mid-IR GaAs QCL^[1]

[1] H. Page *et al.*, APL **78**, 3529 (2001).
[2] X. Gao *et al.*, APL **89**, 191119 (2006).

Our deep-active-well structure

GaAs/Al_{0.45}Ga_{0.55}As

 Deep active wells: In_{0.1}Ga_{0.9}As Barrier step: GaAs_{0.6}P_{0.4}

 $\lambda = 6.7 \ \mu m$

 $\tau_3 = 1.5 \text{ ps}$

Injector design by Multivalley

Monte Carlo simulator

Stationary charge transport in mid-IR QCLs described by the Boltzmann-like transport equation (BTE)^[3-4]

$$\frac{d}{dt} \mathbf{f}_{\mathbf{k}\alpha} = \sum_{\mathbf{k}'\alpha'} \left[\mathbf{S}_{\mathbf{k}'\alpha',\mathbf{k}\alpha} \mathbf{f}_{\mathbf{k}'\alpha'} (1 - \mathbf{f}_{\mathbf{k}\alpha}) - \mathbf{S}_{\mathbf{k}\alpha,\mathbf{k}'\alpha'} \mathbf{f}_{\mathbf{k}\alpha} (1 - \mathbf{f}_{\mathbf{k}'\alpha'}) \right]$$

$$\mathbf{S}_{\mathbf{k}\alpha,\mathbf{k}'\alpha'} = \frac{2\pi}{\hbar} \left| \langle \mathbf{k}'\alpha' | \mathbf{H}_{\text{int}} | \mathbf{k}\alpha \rangle \right|^2 \delta(\mathbf{E}_{\mathbf{k}'\alpha'} - \mathbf{E}_{\mathbf{k}\alpha} \mp \hbar \omega) + \text{Fermi's Golden Rule}$$

$$|\mathbf{k},\alpha\rangle = |\mathbf{k},\nu\lambda\ell\rangle \iff 3D \text{ single electronic state}$$
In-plane wave vector
$$v \text{th subband, } \lambda \text{th stage, } \ell \text{th valley} \\ (\Gamma, \mathbf{X}_z, \mathbf{X}_x, \text{ and } \mathbf{X}_y \text{ valleys})$$

[3] R. C. lotti and F. Rossi, Phys. Rev. Lett. 87, 146603 (2001).
[4] X. Gao, D. Botez, and I. Knezevic, J. Appl. Phys. 101, 063101 (2007).

Ensemble Monte Carlo (EMC) Method

EMC method - most accurate technique to solve BTE

- Random numbers determine the time between two consecutive scatt. events and the scatt. mechanism
- Distribution function **f** evaluated at each sampling time
- Macroscopic quantities (J, n_i, etc.) calculated from f

Electronic states in two adjacent stages

- Γ-states obtained using the k . p method
- X-states obtained using the effective mass equation

 \implies X_z, X_x, X_y valley states (X_x and X_y equivalent)

Γ-bound (black) and Γ-cont. (green) states

Scattering mechanisms included

Intrastage	Γ -valley	X _z -valley	X _x -valley
$(\lambda \rightarrow \lambda) \&$	Electron-LO	Electron-LO	Electron-LO
Interstage	Electron-Electron	$X_z \rightarrow \Gamma$	$X_x \rightarrow \Gamma$
$(\lambda \rightarrow \lambda + 1)$	$\Gamma \rightarrow X_z$	$X_z \rightarrow X_x$	$X_x \rightarrow X_z$
	$\Gamma \rightarrow X_x$		$X_{x} \! \rightarrow \! X_{x}^{(*)}$

Interstage scattering gives rise to the current

LO and intervalley phonons treated as bulk phonons

(*) Due to the double-degeneracy of X_x -valley

Simulation of Initial Structure A

Issues with structure A

- Large X-valley leakage current at room temperature (RT)
- Insufficient modal gain for RT operation

[5] X. Gao, M. D'Souza, D. Botez, and I. Knezevic, J. Appl. Phys. submitted (2007).

Dominant X-valley Leakage Mechanism^[4]

Dominant X-valley leakage current path: J_x

Minimize the overlap between injector and Γ -continuum states

$$\rightarrow$$
 J_c , J_X

[4] X. Gao, D. Botez, and I. Knezevic, J. Appl. Phys. 101, 063101 (2007).

Injector- Γ_c Wavefunction Overlap

• Insufficient modal gain for RT operation

Improved Structure B

- Reduced X-leakage
- Saturation gain = loss at 300 K
- Gain < loss at 77 K

Large separation between level 3 and injector ground level g

Optimized Structure C

[1] H. Page *et al.*, APL **78**, 3529 (2001).
[2] X. Gao *et al.*, APL **89**, 191119 (2006).

- Proposed a deep-active-well design that enables shorter wavelength emission in GaAs-based QCLs.
- Optimized the injector layer thickness for desired device performance by using the Multivalley Monte Carlo (MMC) simulator developed.
- Optimized deep-active-well GaAs QCL allows to shorten the emission wavelength from 9.4 μ m to 6.7 μ m with no penalty in device performance.
- The deep-active-well design for shortening wavelength is extendable to InP-based QCLs, and the MMC simulator can be used for optimization of a wide variety of QCLs.