### Photonic Micro- and Nano-Structures for Enhancing Infrared Detection

#### Shawn-Yu Lin Wellfleet Constellation Chair Professor Rensselaer Polytechnic Institute



#### Acknowledgement

John ChangFabricationRPIAllan ChangFabricationRPIMin-Feng ChenCalculationRPI & NTUZu-Po YangTestingRPIJames BurTestingRPI

| Dan Huang       | Theory & Design | AFRL-Kirtland |
|-----------------|-----------------|---------------|
| Dave Cardimona  | Design & Appl.  | AFRL-Kirtland |
| Sanjay Krishna  | QD Growth       | UNM           |
| Yagya D. Sharma | QD Growth       | UNM           |

(This work is supported by AFOSR/ Dr. Gernot Pomrenke.)

### Content

- 1. Introduction
- 2. Fabrication and Testing
- 3. FDTD simulation
- 4. Integration with a QDIP Detector
- 5. Other promising designs

# Our Objective is to Achieve Light Focusing at Sub- $\lambda$ at the Near Field Without Using a Conventional Lens.





**IR Sensing & Tracking** 

**Objective** 

Field concentration at sub- $\lambda$ Compact / integrated design

**Task** Maximize transmission (T) Minimize area (A) Maximize Flux: (**T/A**) >200%



**Chip Processing** 

# Most of The Research of Light Focusing at Sub- $\lambda$ , $(\lambda/d)>>2$ , is Focused On The Visible and Near-Infrared.

Extraordinary transmission through a 2D array (Ebbesen et al, *Nature* **391**, p.668, 1998)



#### A Brief Summary of Some of the Representative Works on 2D Hole Array

|             |            |        |       |       |                | Figure-of-Merit |       |                  |                         | Лerit |
|-------------|------------|--------|-------|-------|----------------|-----------------|-------|------------------|-------------------------|-------|
|             |            | Metal  | λ     | d     | a <sub>o</sub> | t               | Δλ    | (λ <b>/d)</b> ** | $\Delta\lambda/\lambda$ | Т     |
| Nature*     | <b>'98</b> | Ag     | 1.4µm | 150nm | 0.9µm          | 200nm           | 100nm | 9                | 0.08                    | 5%    |
| JOSA-B*     | <b>'99</b> | Cr     | 1.4µm | 0.5µm | 1µm            | 100nm           | 800nm | 2.8              | 0.6                     | 40%   |
| APL*        | <b>'00</b> | Ag, Ni | 900nm | 400nm | 750nm          | 300nm           | 200nm | 2.2              | 0.25                    | 43%   |
| PRL*        | <b>'01</b> | Ag     | 800nm | 280nm | 750nm          | 320nm           | 150nm | 2.8              | 0.2                     | 14%   |
| JAP         | '06        | Au     | 700nm | 350nm | 1µm            | 120nm           | 80nm  | 2                | 0.1                     | 40%   |
| (aperiodic) |            |        |       |       |                |                 |       |                  |                         |       |
|             |            |        |       |       |                |                 |       |                  |                         |       |
| This work   |            | Au     | 7.5µm | 1.3µm | 2.5µm          | 50nm            | 800nm | 6                | 0.1                     | >60%  |

 $\bullet$  Trade-off ( $\lambda/d)$  and T

\*reprint by all or part of the list: Ebbesen, Lezec, Ghaemi, Thio, Wolf, Pendry, etc

\*\*( $\lambda$ /d)>2-3: beyond the waveguide cutoff transmission.

#### Sample Fabrication and Optical Testing

#### Key Facilities At Rensselaer Micro-Clean-Room (MCR)



#### EVG Aligner and Bonder



GCA Stepper



**Temescal EBeam** 



**IPEC/Westech CMP** 



Suss Probe Station



#### **Rensselaer's Nano-Fabrication Facilities**

EVG NanoImprint





Adixen DRIE



Applied PECVD



Zeiss SEM / EBeam

#### Process Flow For Fabricating 2D Hole Metallic Array.



### The SEM Image Shows Perfect Round Holes and Uniform Au Deposition.





### A Clear, Sharp Transmission Peak Is Observed In The Infrared Wavelength.



Sample Parameters: a=2.48-3.72 μm, d=1.3μm, t=50nm





#### Our Structure Is Promising in Enhancing Transmission Flux (i.e. Transmission Amplitude / F.F.) to Much Greater Than 100%.

**Table 1.** Summary of sample geometries and measured transmission results, where a is lattice constant, d is hole diameter, t is thickness, F.F. is filling fraction,  $\lambda$ max is the wavelength of maximal transmission, T is transmission.

| Sample | a (µm) | d (µm) | t (nm) | F.F.(%) | λmax (µm) | ) T (%) | T/F.F. |
|--------|--------|--------|--------|---------|-----------|---------|--------|
| 1      | 2.480  | 1.3    | 50     | 24.90   | 7.58      | 79      | 3.17   |
| 2      | 2.728  | 1.3    | 50     | 20.58   | 8.40      | 42      | 2.04   |
| 3      | 2.976  | 1.3    | 50     | 17.29   | 9.12      | 34      | 1.97   |
| 4      | 3.224  | 1.3    | 50     | 14.73   | 9.82      | 20      | 1.36   |
| 5      | 3.472  | 1.3    | 50     | 12.70   | 10.46     | 7.7     | 0.61   |
| б      | 3.720  | 1.3    | 50     | 11.06   | 11.37     | 3.9     | 0.35   |

#### Finite Difference Time Domain (FDTD) Simulation

- Mode @ Au-Silicon Interface
- Origin of Field Concentration

## (1) Results of FDTD Shows That The Fields Are Strongly Concentrated Near the Au-Air and Au-Si Interface.



- Au-Silicon resonance
- Light bends at the "corner"
- Focusing w/o lens, QD/QW/PV

## (2) Results of FDTD Shows That The Fields Are Strongly Concentrated Near the Au-Air and Au-Si Interface.



#### (E<sub>x</sub> Profile)



### **FDTD Summary**

- Field concentration is induced at the metal corners.
- The resonance occurs at the Au-Si interface
- The 2D mode propagates along x with a wavevector,  $k_{sp}$ =G.

#### Integration with a QDIP Detector

- → Quantum Dot Sample Growth (UNM)
- → Sample Processing (RPI)
  - Testing

#### A High Quality QD Infrared Photodetector Sample With a Dual Band Response Was Grown at U New Mexico.



30 Periods Quantum Dot (QD)

Spectral response for the QD infrared photodetector at 77K.

#### Mask Layout For Enhancing Infrared Response at $\lambda$ =5µm and 8.5µm Wavelengths.



## Our Process Development Is Almost Complete For 2DHA and QDIP Integration .



#### Conclusion

- Extended 2DHA focusing to the infrared ( $\lambda$ =3-10 $\mu$ m).
- Demonstrated a flux enhancement (>300%) at sub- $\lambda$ .
- Discovered the role of metal corner for light focusing.
- Integrate 2DHA with a QD infrared photodetector.

#### Appendix: Other Designs for Field Enhancement

2.3D metallic mesh design
3D metallic photonic crystal

#### 1. 2D Metallic Mesh Design



#### 2. 3D Metallic Photonic Crystal at Visible Wavelengths.



This 3D photonic-crystal has the shortest operating wavelength in the world. Its feature size is the smallest ever been produced in such a multi-layer nanostructure.

An experimental reflectance data taken at different incident angles. The band edge is at  $\lambda$ ~650nm.

The EM field is strongly enhanced, >200%, when excited at the resonant frequency

(Optics Express 15, 8428 (2007).