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Our Objective is to Achieve Light Focusing at Sub-λ at 
the Near Field Without Using a Conventional Lens.

Objective
Field concentration at sub-λ
Compact / integrated design

Task
Maximize transmission (T)
Minimize area (A)
Maximize Flux: (T/A) >200%

IR Sensing & Tracking Chip Processing

Metal

QW/Q Dots
DielectricsCladding layer 300-1000A

Substrate

Light Focusing

Air
Hole array



T: 2-5%
Flux:

Mechanism:
Surface plasma (ωsp - k)
Coupled interaction (tunneling)

λ=1400nm

Extraordinary transmission through a 2D array
(Ebbesen et al, Nature 391, p.668, 1998)
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Most of The Research of Light Focusing at Sub-λ, 
(λ/d)>>2, is Focused On The Visible and Near-Infrared.
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Basic
Structure:



A Brief Summary of Some of the Representative Works 
on 2D Hole Array

*reprint by all or part of the list: Ebbesen, Lezec, Ghaemi, Thio, Wolf, Pendry, etc
**(λ/d)>2-3: beyond the waveguide cutoff transmission.

Figure-of-Merit

>60%0.16800nm50nm2.5µm1.3µm7.5µmAuThis work

40%0.1280nm120nm1µm350nm700nmAuJAP           ’06
(aperiodic)

14%0.22.8150nm320nm750nm280nm800nmAgPRL*         ‘01
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• Trade-off (λ/d) and T 



Sample Fabrication and Optical Testing



Key Facilities At Rensselaer Micro-Clean-Room (MCR)

EVG Aligner and Bonder

IPEC/Westech CMP

GCA Stepper Temescal EBeam

Suss Probe Station



EVG 
NanoImprint

Zeiss SEM / EBeam

Adixen DRIE

Applied PECVD

Rensselaer’s Nano-Fabrication Facilities



Process Flow For Fabricating 2D Hole Metallic Array. 

(I) Resist Spin-coating

Si substrate

PR

(II) Exposure

Si substrate

(III) NH3 bake / Flood Exposure

Si substrate

NH3 NH3 NH3

soluble
insoluble

insoluble

soluble

(IV) Developing

Si substrate

(V) Metal Evaporation    
( t=50-200nm)

(VI) Lift-off

Si substrate 
(n=3.4)

Au
Si substrate

Mask

(Minimum feature size: d=0.5-2µm)



The SEM Image Shows Perfect Round Holes and 
Uniform Au Deposition. 

200nm

100nm=t

2D Au Hole-Array Sample

Au-film

2µm

a

d

(Hole filling fraction ~25%)

d=1.3µm
t = 50nm



A Clear, Sharp Transmission Peak Is Observed In The 
Infrared Wavelength. 
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Sample Parameters: 
a=2.48-3.72 µm, d=1.3µm, t=50nm

λres=7.6µm

• Infrared (sharp resonance) 
• High T (T/A>300%)
• Sharp Resonance (vs “a” linearly)
• Lineshape asymmetry (Fano)

2µm

a

d

Si substrate 
(n=3.4)

(Hole filling fraction ~25%)

Au

(*Work to be submitted for journal publication.)



The Sharp Transmission Is Due to 
Plasmonic Resonance at the Au-Silicon Interface.

In-Plane Momentum Matching 
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a (µm)
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λsp at the Au/Si Interface

Au-Air

Au-Si
• Tunneling
• Amp. vs t
• Position vs t



Our Structure Is Promising in Enhancing Transmission 
Flux (i.e. Transmission Amplitude / F.F.) to Much Greater 

Than 100%.



Finite Difference Time Domain (FDTD) Simulation

• Mode @ Au-Silicon Interface
• Origin of Field Concentration



200nm

100nm

2µm

a

Au-film

Top View Side View
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Au

hole

%500≥ε

Air
Au
Si

Field Concentration at 
the Au-Air interface.

The EM field is funneled 
around the metal corner.

(1) Results of FDTD Shows That The Fields Are Strongly 
Concentrated Near the Au-Air and Au-Si Interface.  

• Au-Silicon resonance
• Light bends at the “corner”
• Focusing w/o lens, QD/QW/PV

SEM 
Images

EM
Field 
Profile



x

(Ex Profile)

Au-Air Interface

(2) Results of FDTD Shows That The Fields Are Strongly 
Concentrated Near the Au-Air and Au-Si Interface.  



• Field concentration is induced at the metal corners.

• The resonance occurs at the Au-Si interface

• The 2D mode propagates along x with a wavevector, ksp=G.

FDTD Summary



Integration with a QDIP Detector

• Quantum Dot Sample Growth (UNM)
• Sample Processing (RPI)
• Testing



30 Periods Quantum Dot (QD) Spectral response for the QD 
infrared photodetector at 77K.

A High Quality QD Infrared Photodetector Sample With a 
Dual Band Response Was Grown at U New Mexico.  

Sample Structure Spectral Response

λ~5µm

λ~9µm



T&B Contact

QDIP

2DHA

Mesa

Mask Layout For Enhancing Infrared Response 
at λ=5µm and 8.5µm Wavelengths.  



Mesa 
Etched 
Profile

Patterned 
Structure

Our Process Development Is Almost Complete For 
2DHA and QDIP Integration .  

λsp~5µm



• Extended 2DHA focusing to the infrared (λ=3-10µm).

• Demonstrated a flux enhancement (>300%) at sub-λ.

• Discovered the role of metal corner for light focusing.

• Integrate 2DHA with a QD infrared photodetector.

Conclusion



Appendix: Other Designs for Field Enhancement

1.2D metallic mesh design

2.3D metallic photonic crystal
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1. 2D Metallic Mesh Design



2. 3D Metallic Photonic Crystal at Visible Wavelengths.
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(c) Reflect.

Transmit.
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z ε >200%
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This 3D photonic-crystal has the shortest 
operating wavelength in the world.  Its 
feature size is the smallest ever been 

produced in such a multi-layer 
nanostructure.

The EM field is strongly enhanced, >200%, 
when excited at the resonant frequency

An experimental reflectance data taken at 
different incident angles. The band edge 

is at λ~650nm.

(Optics Express 15, 8428 (2007). 


