A Comparison of Optical Modulator Structures Using a Matrix Simulation Approach

Kjersti Kleven and Scott T. Dunham Department of Electrical Engineering University of Washington 27 September 2007

Outline

- Motivation
- Resonant Cavity Modulator
- Microring Resonator Modulator
- Modeling Approach
- Results

Modulator Design Goals

- Intended for future integrated optics and DWDM applications
 - Primarily CMOS-compatible
 - Low drive voltage
 - Large response
 - High-speed modulation
 - Compact structure
 - Narrow linewidths
- Often difficult to simultaneously achieve these design goals
- Modeling is challenging due to small dimensions and complex nature of the devices
 - Often requires full 3D simulation for accurate propagation characteristics
 - Very computationally expensive

Material Options

- Silicon
 - Low loss
 - Highly manufacturable
- Electro-optic polymer
 - Very fast response
 - Large change in index of refraction under applied field
 - The achievable change in the index of refraction is related to the degree of chromophore alignment of the film achieved during static electrode poling

- The EO polymer parameters considered in this analysis were:
 - n = 1.6 at λ = 1.55µm
 - r₃₃ = 100pm/V
 - Loss = 1 dB/cm

$$\Delta n = -\frac{n^3 r_{33} V_a}{2d}$$

- Recent developments have shown significant improvements in EO response
 - Dalton et al. have demonstrated r₃₃ = 300pm/V and glass transition temperatures of 130°C^[1]

[1] Dalton et al., Proc. SPIE, vol. 5935, 2005

 $\Delta n = -\left[8.8 \times 10^{-22} \Delta N_e + 8.5 \times 10^{-18} \left(\Delta N_h\right)^{0.8}\right]$

 $\frac{\Delta n}{\Lambda T} = +1.86 \times 10^{-4} K^{-1}$

Basic Structures

- Fabry-Perot cavity is one option for an optical modulator structure
 - Series of holes creates a Bragg reflector
 - Resonant cavity breaks the periodicity of the reflector and allows for transmission at the resonant wavelength
 - Hybrid slot waveguides strongly confines light in narrow low-index region
 - Electro-optic polymer in slot waveguide can provide active material for modulation
 - Silicon ridges can be used as integrated electrodes, significantly reducing the necessary applied voltages

Current Resonant Cavity Modulators

- A FP structure in silicon using free carrier dispersion effects was demonstrated by Barrios et al.^[2]
 - A very short device length: only 20µm
 - FWHM of 1.54nm
 - Modulation depth of 53%

- Compact PBG modulator with p-i-n junction^[3]
 - Device length 6µm
 - Modulation depth of 5.87dB
 - Demonstrated modulation at 250Mb/s
 - FWHM of 6.19nm

[2] Barrios et al., *IEEE Photon. Technol. Lett.*, vol. 16, Feb. 2004[3] Schmidt et al., *Optics Express*, vol. 15, March 2007

Basic Structures

Microring resonator

• Light of resonant wavelengths couples into the ring and can result in a sharp extinction ratio in the transmission spectrum

Current Microring Resonators/Modulators

- A very compact silicon MRR in SOI has been demonstrated by Miao et al.^[4]
 - Drop port transmission of 81%
 - FWHM of 1.43nm for a diameter of 7.5µm
 - No modulation demonstrated
- High-speed all-polymer MRR modulator^[5]
 - ALJ8/APC EO polymer demonstrated 28GHz modulation
 - Ring diameter of 2mm, resulted in FWHM of 0.03nm
- A hybrid EO polymer/silicon slot waveguide MRR modulator was recently demonstrated^[6]
 - 100µm ring diameter
 - 20V required for 5dB modulation depth

[4] Miao et al., *J. Microlith, Microfab.*, vol. 4, Apr. 2005
[5] Tawaza et al., *J. Lightwave Technol.*, vol. 24, Sept. 2006
[6] Baehr-Jones et al., *Optics Express*, vol. 13, July 2005

27 September 2007

NUSOD 2007

Modeling Approach

- Use a cascading matrix approach for full 3D modeling of optical modulators^[7]
 - Needs to include propagation through straight waveguide(s) as well as coupling into and out of the separate ring waveguide for microring designs

•	•	•	•				•	•	•	•

- Simulation of each unique section
 - *m* is the number of modes and *p* is the number of ports

b
$$\mathbf{b}_{(1 \times mp)} = \mathbf{S}_{(mp \times mp)} \mathbf{a}_{(1 \times mp)}$$

 Scattering matrices from each section are organized into a diagonal matrix, from input to output, with N_{tot} being the total number of sections

$$\begin{bmatrix} \mathbf{b}_{1} \\ \mathbf{b}_{2} \\ \vdots \\ \mathbf{b}_{N_{tot}} \end{bmatrix} = \begin{bmatrix} \mathbf{S}_{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{S}_{2} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \ddots & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{S}_{N_{tot}} \end{bmatrix} \begin{bmatrix} \mathbf{a}_{1} \\ \mathbf{a}_{2} \\ \vdots \\ \mathbf{a}_{N_{tot}} \end{bmatrix}$$

[7] Glock et al., IEEE Trans. Mag., vol. 38, 2002

27 September 2007

Modeling Approach

- The coupling between the sections still needs to be included
 - First create a permutation matrix of the internal and external inputs

$$\begin{bmatrix} \mathbf{a}_{1} \\ \vdots \\ \mathbf{a}_{N_{tot}} \end{bmatrix} = \mathbf{M}_{Int} \begin{bmatrix} \mathbf{a}_{Int} \\ \mathbf{a}_{Ext} \end{bmatrix}$$

- Then create another permutation matrix that specifies the output of one section as the input to another
 - Provides the coupling between the light input to the straight waveguide and the coupled ring waveguide

$$\begin{bmatrix} \mathbf{a}_{Int} \\ \mathbf{b}_{Ext} \end{bmatrix} = \mathbf{M}_{Bnd} \begin{bmatrix} \mathbf{b}_{1} \\ \vdots \\ \mathbf{b}_{N_{tot}} \end{bmatrix}$$

- Finally, want relationship between input at one end of straight waveguide and output at other end of straight waveguide
 - Combining above relationships gives:

$$\begin{bmatrix} \mathbf{a}_{Int} \\ \mathbf{b}_{Ext} \end{bmatrix} = \mathbf{M}_{Bnd} \mathbf{S}_{Tot} \mathbf{M}_{Int} = \begin{bmatrix} \mathbf{T}_{11} & \mathbf{T}_{12} \\ \mathbf{T}_{21} & \mathbf{T}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{a}_{Int} \\ \mathbf{a}_{Ext} \end{bmatrix}$$

- Eliminating internal coupling (**a**_{int}) leads to final transmission matrix
 - Where the dimensions of T_{21} are ($N_{Ext} \times N_{Int}$), T_{11} , I are ($N_{Int} \times N_{Int}$), T_{12} are ($N_{Int} \times N_{Ext}$), and T_{22} are ($N_{Ext} \times N_{Ext}$)

$$\mathbf{b}_{Ext} = \left[\mathbf{T}_{21} (\mathbf{1} - \mathbf{T}_{11})^{-1} \mathbf{T}_{12} + \mathbf{T}_{22}\right] \mathbf{a}_{Ext}$$

Simulation

- A full simulation of a 7-period DBR with 100nm holes spaced by 515nm was performed to compare this to the cascade matrix approach
 - Excellent agreement of transmission
 - Simulation times:

 $\eta = \frac{P_{out}}{P_{in}}$

- Full structure: 7 hours
- Cascade structure: 30 minutes

- Calculation of overlap integral can give a sense of accuracy of cascade matrix approach
 - Significant disturbances of the primary mode reduce this agreement

Section Length:	200nm	400nm	800nm	1000nm	
Overlap (η) %:	82.64	86.76	89.51	90.92	

Design Parameters

- Modulator structures allows for design trade-offs among:
 - Modulation depth
 - FWHM
 - Max. transmission
 - Applied voltage
 - Device length
 - Device width

Results for Resonant Cavity Modulator

Results for 30µm Ring Resonator Modulator

- Single coupled ring resonator
 - Variations in gap spacing
- Index variation of 0.003
 - FWHM of 0.23nm
 - MD of 83%
- Two waveguides coupled to ring resonator with 25µm hybrid slot waveguide in ring waveguide
 - FWHM of 0.18nm
 - MD of 78%

NUSOD 2007

Conclusions

- Full 3D simulation of resonant cavity and microring resonator modulators has been investigated
 - Drastic reduction in simulation times using cascade matrix approach
 - Good agreement between full simulation and matrix analysis
- Designed and simulated a hybrid silicon/EO polymer resonant cavity modulator
 - Simultaneously achieve a large modulation depth, low applied voltage, and compact device structure
 - CMOS compatible, with minimum feature size limited to 100nm to allow for the use of current photolithography techniques
- Investigated hybrid microring resonator modulator
 - Also has large response for small voltages, but design needs to be improved for higher throughput
- Future work will focus on further investigation of this modeling approach for optical modulators and other devices for integrated optics applications
 - Simulation of microring resonator modulator designs
 - Investigation of fabrication tolerances
 - Further analysis of hybrid silicon/EO polymer structures and multi-ring resonators

Acknowledgments

- Nanotechnology Modeling Lab
- Intel PhD Foundation Fellowship
- NSF Graduate Research Fellowship