Quantitative modeling of resonant PL in InGaN SQW LEDs

Matthias Sabathil, A. Laubsch, N. Linder

Outline

- Motivation: Overview and status of LED modeling tasks
- Self-consistent model for InGaN-SQW LED
- Comparison to reverse bias PL-experiment
- What does the model predict?
- Conclusion

OSRAM Opto Semiconductors

Our light source: The ThinGaN LED

Main efficiency issues:

- Series resistance (Rs)
- Light generation (IQE)
- Light extraction (EQE)
- Conversion (Lm/W)
- Thermal resistance (RTh)

Goal of modeling: Quantitative description and optimization of entire system

Overview modeling tasks for InGaN LEDs: <u>Chip properties</u>

Overview modeling tasks for InGaN LEDs: <u>Internal properties</u>

NUSOD 07 | Page 6 OS T CE M | M. Sabathil

Proposed Approach

Theory

Experiment

Simple but predictive model

Introduction: Quantum well in piezoelectric materials

No piezo-fields: (InGaAIP, AlGaAs)

- Good overlap of electrons and holes
- No extra barriers

With piezo-fields: (InGaN, AIGaN along [0001] axis) Injection barrier due to **Piezoelectric charges** Electrons and holes separated:

What are the consequences of the piezoelectric fields ?

QW-alloy profile obtained from DALI-measurement

• Experiment: Gaussian alloy profile

Piezoelectric charges

Gaussian alloy profile → continous distribution of the piezoelectric charges
Maximum electric field inside QW ~ 3 [MV/cm]

Schematic picture of bandstructure in PL

NUSOD 07 | Page 11 OS T CE M | M. Sabathil

Relevant transport processes for resonant PL

Application to real LED-structure

Band structure

Doping vs. piezoelectric charges

Green LED: Piezoelectric charges dominant
 → Complete screening of piezoelectric charges via doping not realistic.

Physics: Quantum confined Stark effect (QCSE)

• Peak shift follows change in overlap (QCSE)

Compare to experiment: Peak shift

Compare to experiment: Decay time

Decay rate ∞ electron-hole overlap
Strong influence of piezoelectric field

Screening @ forward bias (10mA)

High carrier densities (>2E19) due to slow decay rates.
Only partial screening of piezoelectric charges

Forward bias: Screening of piezoelectric fields

Forward bias peak shift: screening

Prediction: Compare polar – nonpolar peakshift

Low currents: 50nm shorter peak wavelength without piezoelectric fields
High currents: Peaks approach each other due to screening piezoelectric fields

 \rightarrow Can the model predict the absorption and emission?

NUSOD 07 | Page 19 OS T CE M | M. Sabathil

Compare to experiment: emission and absorption

Simple single particle model with artificial broadening shows good agreement

→ How does Indium content influence absorption and Stokes-shift?

NUSOD 07 | Page 20 OS T CE M | M. Sabathil

Prediction: absorption tail vs. Indium content

Absorption tail strongly increases with increasing indium content

Prediction: Stokes-shift vs. Indium content

Stokes shift strongly increases with increasing indium content

 \rightarrow How does the Indium content influence the gain?

Compare to experiment: Peak gain vs. current

Experimental gain

50 5000 4500 (a) gain [1/cm] 40 4000 Mode gain (cm⁻¹) 3500 30 3000 2500 480nm 2000 20 375 nm 384nm Peak 1500 407 nm 1000 440 nm -500 -470 nm 0 0 2 3 n 10 8 0 2 4 6 Current density (kA/cm²) Current density [kA/cm²] K. Kojima, Opt. Express 15, 7730 (2007)

Different gain evolution as function of current for different Indium contents Qualitative agreement with model

Calculated gain

Conclusion

Successful collaboration between theory and experiment

Quantitative prediction of:

- peak-shift (EL and reverse bias PL)
- electron-hole overlap
- carrier densities
- absorption and Stokes shift

Qualitative prediction of:

- gain

Quantitative modeling of InGaN structures is possible with 'simple' model

