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Outline

Brief background

o carrier heating bottleneck to direct current modulation
o Bloch equation analysis of plasma heating by radiation
New self-consistent simulation of plasma heating effect

o full wave electromagnetics

o Fermi gas thermodynamics

Delaunay/Voronoi Surface Integration (DVSI)

o curl operators in Ampere’s and Faraday’s laws

o divergences in electrostatics, charge, and energy conservation
(i.e. box integration)

Simulate plasma heating modulation of single QW laser structure
o electrical current pumping to achieve lasing

o patch antenna like structure to inject high frequency radiation
Summary
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Current Injection Gain Saturation by Dual Modulation

M. Grupen and K. Hess, IEEE JQE 34 120, 1998.
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o self-consistent EM & nonlinear charge transport
Maxwell’s full wave vector field theory
Boltzmann’s equation solved for a Fermi gas

Distribution Statement A: Approved for public release; distribution is unlimited. @ 1
il
-




Classical Theory of Electromagnetics
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Defining Field Components

Two vector fields and four field equations
Decompose field flux densities into orthogonal functionals
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Defining Charge & Energy Densities
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Michele Goano, “Algorithm 745: Computation of the Complete and Incomplete
Fermi-Dirac Integral,” ACM Trans. Math. Software, vol. 21, no. 3, Sept. 1995,

pp. 221-232
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Bulk Charge Fluxes: 1°* Moment of Boltzmann Equation
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Bulk Energy Fluxes: 3¢ Moment of Boltzmann Equation

kinetic energy and chemical work
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Discretized Energy Fluxes

Scharfetter-Gummel kinetic energy & work
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Heterojunction Flux
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Quantum Well
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Optical Photon Emission
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Collision Broadening

broad factor (arb. units)
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Delaunay/Voronoi Surface Integration (DVSI): Ampere’s Law
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Delaunay/Voronoi Surface Integration (DVSI): Faraday’s Law
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DVSI: Compatible with Box Integration Method
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‘ Divergences: Electrostatics & Charge Conservation

divergence theorem
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Solving the Discretized Equations with Newton Method
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Microwave Heating Structure
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200 mA Bias, 0.5 V Heating Voltage Step

injected
current

heating
voltage signal

applied electric field chaﬁge in QW electron temperature
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Current & Plasma Heating Modulation Schemes

200 mA quiescent bias current

0.2 mA sinusoidal current signal

1 V sinusoidal voltage heating signal
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QW Carrier Temperature Variations Affect Optical Gain

200 mA dc current bias
2 V amplitude, 500 GHz heating signal
distance measured from the injected radiation boundary

QW electron temperature conduction band lasing state
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Relative Variations in QW Electron Gas
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Approximately Linear Scaling with Heating Voltage

= 200 mA dc current bias
= 500 GHz voltage heating signal
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= radiation energy goes as square of field strength
= linear scaling may be due to coupling efficiency
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Summary

Gain saturation from carrier heating limits laser diode current
modulation

0 increasing injected current raises QW chemical potential

o dissipating injected carriers’ excess energies increases QW
temperature

o gain increase from chemical potential offset by temperature
Increase

New simulation techniques used to study dual modulation effect
o full wave electromagnetics

o Fermi gas dynamics with full thermal effects

o new treatment of heat flow using heat capacity of Fermi gases
d

new vector field discretization scheme allows self-consistent
solutions

Terahertz modulation through QW carrier heating by injected radiation

o appears permissible by Maxwell’s vector field theory and kinetic
theory of Fermi gases

o practical laser diode structures
will exhibit significant lattice heating
likely adversely affect this high frequency modulation scheme
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