High-Speed Photodetection
Exploiting Quasi-Unipolar
Charge Transport

P. D. Yoder

School of Electrical and Computer Engineering
Computational Electronics Group
Georgia Institute of Technology

Numerical Simulation of Optoelectronic Devices ‘07



Outline

e Background
e Limitations of the heterojunction p-i-n design
e Alternative design strategies
e Theory of the quasi-unipolar photodiode operation
e Device measurement
e Monte Carlo simulation

e Summary

afTec n@l@@;.y Numerical Simulation of Optoelectronic Devices ‘07



The Heterojunction p-i-n Photodiode
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Alternative Design Strategies

N
N

e Uni-traveling Carrier (UTC)

o 7. Ishibashi et al., Jap. J. Appl. Phys. 36,
1997.
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*D.A. Tulchinsky et al., IEEE J. Selected
Topics on Q. Mech. 10, 2004.

e Quasi-Unipolar (QU) Yoder and Flynn, J. Lightwave Tech. 24, 2006.
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The Quasi-Unipolar Photodiode
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e Absorption and depletion regions are overlapping

e Depletion region offset is controlled by doping and bias
 InP buffer doping
= Zn diffusion profile through absorber
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QU Photodiode Design
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Photogeneration in Depleted Absorber

i undepleted | depletion
. absorption | regionQ,
| regionQ, |
— . >
NSy ) e £-h pairs generated within
A

depleted absorber region drift to
their respective depletion region
eadges

e Maximum hole transit distance
limited to W,-W,, .

Controlled by design!
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Photogeneration in Undepleted Absorber

i undepleted | depletion ‘ -
| absorption | regionQ, e Electrons photogenerated within
| regionQ, | :

0, escape into 0, by:

—— e——Xa, |
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e Diffusion
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QU Photodiode Operation

. undepleted | depletion S .
| absorption | regionQ, | » Electron motion in 2, Is
. regionf2, decoupled from external circuit
I: e g Qda ; : c o
N | ' » Holes generated within €2, do
not contribute to photocurrent
—

e Fraction of photocurrent carried
by holes depends on W,, and W,

e Maximum electron transit
aistance limited to W,+W,

Controlled by design!

e Electron transit distance always
shorter than for UTC device
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QU Photodiode Operation

depletion
region{2,

i undepleted |
i absorption
| regionQ,

i
N
4 N ,(x)

Max. hole transit distance: W,-W/,

>

Max. elec. transit distance: W + W

|| efTechnelogy

For arbitrary W, and W, :
Increasing W,, from O to W,

*Reduces the number of
holes participating in
photocurrent

o Trades electron against hole
transit time

3dB banadwidth is approximately
maximized when temporal extent
of electron and hole photocurrent
response to an optical impulse
are “balanced”.
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QU Photodiode Operation

i undepleted | depletion
. absorption | regionQ,
| regionQ, |
i
N++ |
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N, Limiting cases of QU design:

e UTC device: W, ->W,

e p--n. W, >0, Wy ->W,
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= 7@
pe
R(N)
'\/\

I ef Tec n@l@@;.y Numerical Simulation of Optoelectronic Devices ‘07



Analytic Model: Linearized Moments of BTE

Within 2, (undepleted absorber material).
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Within 2, (depleted absorber material):

0 0 : 0
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Within Q. (depleted collector material):

£(1+ T £)5n —-D,V?sn+v.Véon=(1+r, Q)G(x,t)
ot ot ot

I ef Tec n@l@@;.y Numerical Simulation of Optoelectronic Devices ‘07



Application to QU Waveguide

Geometry Designs
3dB Bandwidth vs. W,
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Aside: Application to PDA Designs
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Measurement : X. Li et al., IEEE

/7700’6’/ Photonics Technology Letters, 2004.
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Vertical Illumination QU Photodetector

SiINXx
InGaAsP
InGaAs absorber toos
InP buffer 15 micronsI

InP substrate

N-metal

optical
signal

* MOCVD growth
* Post-growth Zn diffusion + thermal anneal
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Scanning Capacitance Measurement

e Intensity proportional to
free carrier density

p++ (Zn diffused)

InGaAs
e Peripheral “halo” indicates

p-n junction at InGaAs/InP
Interface

= Depletion region straddles
InP buffer and InGaAs
absorber

Courtesy of D. V. Lang
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S12 Measurement at O dBm Optical Power

Bandwidth vs. Junction Capacitance )
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Monte Carlo Charge Transport Model

e Full band structure of InGaAs and InP
e Electron and hole ensemble

e Scattering mechanisms:
e Polar optical electron-phonon scattering
e Optical deformation potential scattering
e [nelastic acoustic deformation potential
scattering
e lonized impurity scattering

e E£xact integration of the linearized BTE to precision of the phase
space grids

e Mixed-mode simulation, fully coupled to external circuit
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Bandstructure Calculations
( Nonlocal Empirical Pseudopotential Method w/5S-0)

Developed an algorithm to
generate pseudopotential
parameters optimized to
reproduce measured values of:

1) Optical transition energies E,,
E,*+A,, E;, E;+A,, E,’, and
E, +A,’
determined by spectroscopic
ellipsometry, reflectrometry

Energy (eV)

2) Effective masses of band-edge
electrons and holes, determined
by cyclotron resonance

New bandstructures generated
for In;,Ga,As and InP

Wave Vector k

Numerical Simulation of Optoelectronic Devices ‘07

Georgialhsifiuris
| el Technoelegy



BW vs. Bias with 3.0 um Absorber

Bandwidth vs. Applied Bias Bandwidth vs. Applied Bias
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Simulation confirms understanding BW may be improved by
of device operation Increasing W, and decreasing W,
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e QU design strateqy proposed as alternative to UTC and p-i-n

approaches
e UTC and p-i-n detectors are limiting cases of the QU design
Strateqy

e BW may be maximized by “balancing” electron and hole
photocurrent responses.

e New equivalent circuit and analytic model proposed for QU and
UTC photodiode operation

e Device measurements reveal significant improvements in 3aB
bandwidth w.r.t. p-i-n design.
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Optical Saturation Power
(2.5um absorber, 2V bias)

Bandwidth vs. Optical Power Banadwidth may be
10 . .
) X traded for optical
. _G © _ saturation power
via reauction of W,
) without penalty to
2 1 «95% external QF ' quantum efficiency.
s | eLow power dissipation (2V bias)
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- Highest reported 10
2t - Gbps optical saturation
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T 5 0 5
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Monte Carlo Simulation Results
(2um absorber, 5V bias)

o Velocity vs. Position Energy vs. Position
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Dopant gradient-induced fields lead  Electron transport is non-local
to high electron velocity in Q,, throughout active region
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Simulated Impulse/Frequency Response
(2um absorber, 5V bias)
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“Balancing” electron and hole response through design of W,, and W,
optimizes moaulation banawidth for arbitrary W,.
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