

High-Speed Photodetection Exploiting Quasi-Unipolar Charge Transport

P. D. Yoder

School of Electrical and Computer Engineering Computational Electronics Group Georgia Institute of Technology

Computational Electronics Group

Outline

- Background
 - Limitations of the heterojunction p-i-n design
 - Alternative design strategies
- Theory of the quasi-unipolar photodiode operation
- Device measurement
- Monte Carlo simulation
- Summary

The Heterojunction p-i-n Photodiode

High QE achieved at the cost of bandwidth

Computational Electronics Group

Alternative Design Strategies

• Uni-traveling Carrier (UTC)

• *T. Ishibashi et al., Jap. J. Appl. Phys.* **36**, 1997.

• Partially Depleted Absorber (PDA)

•D.A. Tulchinsky et al., IEEE J. Selected Topics on Q. Mech. **10**, 2004. N_A^{++} e N_D^{++}

• Quasi-Unipolar (QU)

Yoder and Flynn, J. Lightwave Tech. 24, 2006.

The Quasi-Unipolar Photodiode

• Absorption and depletion regions are overlapping

- Depletion region offset is controlled by doping and bias • InP buffer doping
 - The Durier doping
 The diffusion profile through
 - Zn diffusion profile through absorber

QU Photodiode Design

- 3 independent design parameters
 Absorber thickness (W₄)
 - Undepleted absorber width (W_{U})
 - Depletion region thickness (W_D)
- Controlled by doping and bias

Photogeneration in Depleted Absorber

- E-h pairs generated within depleted absorber region drift to their respective depletion region edges
- Maximum hole transit distance limited to W_A-W_U.

Controlled by design!

Photogeneration in Undepleted Absorber

Computational Electronics Group

Georgialnstitute of Technology • Electrons photogenerated within Ω_u escape into Ω_d by:

• Drift in static field $E_{static} \approx \frac{k_B T}{q} \frac{\nabla N_A}{N_A}$

• Drift in dynamic field

$$E_{dynamic} pprox J_{pc}^{(d)} / (q N_A \mu_p)$$

Diffusion

$$\tau \approx W_U^2 / 2D_e$$

QU Photodiode Operation

Computational Electronics Group

Georgialnstitute of Technology

- Electron motion in Ω_u is decoupled from external circuit
- Holes generated within Ω_u do not contribute to photocurrent
- Fraction of photocurrent carried by holes depends on W_U and W_D
- Maximum electron transit distance limited to W_U+W_D
 Controlled by design!
- Electron transit distance always shorter than for UTC device

QU Photodiode Operation

For arbitrary W_A and W_D : Increasing W_U from 0 to W_A

•*Reduces the number of holes participating in photocurrent*

• Trades electron against hole transit time

3dB bandwidth is approximately maximized when temporal extent of electron and hole photocurrent response to an optical impulse are "balanced".

QU Photodiode Operation

Limiting cases of QU design:

- UTC device: $W_U \rightarrow W_A$
- *p-i-n*: $W_U \to 0, W_D \to W_A$

• PDA:
$$W_U + W_D < W_A$$

Analytic Model: Linearized Moments of BTE

Within Ω_{μ} (undepleted absorber material):

$$\left(\frac{\partial}{\partial t} \left(1 + \tau_p^{(u)} \frac{\partial}{\partial t} \right) + \frac{e\mu_p p_0}{\varepsilon} \right) \delta p - D_p \nabla^2 \delta p + \mu_p \vec{E}_0 \bullet \nabla \delta p = \frac{e\mu_p p_0}{\varepsilon} \delta n + \left(1 + \tau_p^{(u)} \frac{\partial}{\partial t} \right) G(x, t)$$

$$\frac{\partial}{\partial t} (1 + \tau_n \frac{\partial}{\partial t}) \delta n - D_n \nabla^2 \delta n + v_n \nabla \delta n = (1 + \tau_n \frac{\partial}{\partial t}) G(x, t)$$

Within Ω_{du} (depleted absorber material):

$$\frac{\partial}{\partial t}(1+\tau_{p}\frac{\partial}{\partial t})\delta p - D_{p}\nabla^{2}\delta p + v_{p}\nabla\delta p = (1+\tau_{p}\frac{\partial}{\partial t})G(x,t)$$
$$\frac{\partial}{\partial t}(1+\tau_{n}\frac{\partial}{\partial t})\delta n - D_{n}\nabla^{2}\delta n + v_{n}\nabla\delta n = (1+\tau_{n}\frac{\partial}{\partial t})G(x,t)$$

Within Ω_{dc} (depleted collector material):

$$\frac{\partial}{\partial t}(1+\tau_n\frac{\partial}{\partial t})\delta n - D_n\nabla^2\delta n + v_n\nabla\delta n = (1+\tau_n\frac{\partial}{\partial t})G(x,t)$$

Georgial Institute of **Tech**nology

Application to QU Waveguide **Geometry Designs**

For fixed QE and C_i, optimal 3dB bandwidth is achieved by QU rather than purely unipolar or purely bipolar operation

(fully bipolar)

(fully unipolar)

Computational Electronics Group

Aside: Application to PDA Designs

Band diagram and equivalent circuit model

Comparison with experiment

Measurement : X. Li *et al.*, *IEEE Photonics Technology Letters*, 2004.

Investigation of "charge balancing"

Computational Electronics Group

Vertical Illumination QU Photodetector

* MOCVD growth
* Post-growth Zn diffusion + thermal anneal

GeorgialInstitution Computational Electronics Group

Scanning Capacitance Measurement

• Intensity proportional to free carrier density

• Peripheral "halo" indicates p-n junction at InGaAs/InP interface

Depletion region straddles
 InP buffer and InGaAs
 absorber

Courtesy of D. V. Lang

Computational Electronics Group

S12 Measurement at 0 dBm Optical Power

• *QU device is RC-limited*

• Further BW improvement is possible

Georgialnଙ୍ଗୌଧାର୍ଦ୍ତ ତୀ **Tech**nology

Monte Carlo Charge Transport Model

- Full band structure of InGaAs and InP
- Electron and hole ensemble
- Scattering mechanisms:
 - Polar optical electron-phonon scattering
 - Optical deformation potential scattering
 - Inelastic acoustic deformation potential scattering

- Ionized impurity scattering
- Exact integration of the linearized BTE to precision of the phase space grids
- Mixed-mode simulation, fully coupled to external circuit

Bandstructure Calculations

(Nonlocal Empirical Pseudopotential Method w/S-O)

Georgialnstitute

Developed an algorithm to generate pseudopotential parameters optimized to reproduce measured values of:

- 1) Optical transition energies E_0 , $E_0 + \Delta_0$, E_1 , $E_1 + \Delta_1$, E_0 ', and E_0 ' + Δ_0 ' determined by spectroscopic ellipsometry, reflectrometry
- 2) Effective masses of band-edge electrons and holes, determined by cyclotron resonance

New bandstructures generated for In₅₃Ga₄₇As and InP

BW vs. Bias with 3.0 µm Absorber

Simulation confirms understanding of device operation

Computational Electronics Group

GeorgialInstitute of Technology *BW may be improved by increasing* W_D *and decreasing* W_U

- *QU design strategy proposed as alternative to UTC and p-i-n approaches*
 - UTC and p-i-n detectors are limiting cases of the QU design strategy
 - *BW may be maximized by "balancing" electron and hole photocurrent responses.*
- New equivalent circuit and analytic model proposed for QU and UTC photodiode operation
- Device measurements reveal significant improvements in 3dB bandwidth w.r.t. p-i-n design.

Computational Electronics Group

Optical Saturation Power (2.5µm absorber, 2V bias)

Bandwidth may be traded for optical saturation power via reduction of W_D without penalty to quantum efficiency.

Highest reported 10 Gbps optical saturation power with 95% QE

Computational Electronics Group

Monte Carlo Simulation Results (2µm absorber, 5V bias)

Dopant gradient-induced fields lead to high electron velocity in Ω_{ν} .

Computational Electronics Group

Georgialnstitute of Technology *Electron transport is non-local throughout active region*

Simulated Impulse/Frequency Response (2µm absorber, 5V bias)

"Balancing" electron and hole response through design of W_U and W_D optimizes modulation bandwidth for arbitrary W_A .

Georgial Stitute Computational Electronics Group