

Characterization and Optimization of High Power InGaAs/InP Photodiodes

NUSOD presentation, 2007 University of Delaware, DE

Huapu Pan, Xin Wang, Andreas Beling, Hao Chen, and Joe C. Campbell

Electrical and Computer Engineering University of Virginia Charlottesville, VA 22904, USA

Supported by the Naval Research Laboratory

Analog Fiber Optic Links NIVERSITY /IRGINIA Optical RF to RF Ouput RF Input to RF Optical CW Modulator Source Photodetector $\mathrm{RF}_{\mathrm{out}}$ Transfer RF_{in} **Functions** Slope = Responsivity (A/W) Output Current (mA) Throughput Optical Out Out ww ww In ∰ In Input Optical Power (mW) Input Voltage I_{photo} \Rightarrow Gain \uparrow Noise \downarrow Spur free dynamic range 2

Schematic Representations of Charge Distribution University

High Power Photodiode with Modified UTC Structure UNIVERSITY

Diameter= 34μ m Series resistance= 5.6Ω Load resistance= 50Ω Capacitance=166fF Saturation Current = 100mA @ -5V Responsivity=0.75A/W Bandwidth =17GHz InGaAs, p⁺, Zn, 2.0x10¹⁹, 50nm

InP, **p+** , **Zn**, **3**x10¹⁸, 1000nm

InGaAs, Zn, 2x10¹⁸, 100nm

InGaAs, Zn, 1x10¹⁸, 150nm

InGaAs, Zn, 5x10¹⁷, 200nm

InGaAs, Zn, 2.5x10¹⁷, 200nm

InGaAs, Si, 1.0x10¹⁶, 200nm

InGaAsP,Q1.4, undoped, 15nm

InGaAsP,Q1.1, undoped, 15nm

InP, Si, 1.0x10¹⁶, 605nm

InP, n+, Si, 1.0x10¹⁹, 1000nm

InGaAs, n+, Si, 1.0x10¹⁹, 20nm

InP, n+, Si, 1.0x10¹⁹, 200nm

InP, semi-insulating substrate, Double side polished Graded-doped p-absorber

Intrinsic absorber

Graded layer

} Intrinsic collector

Measurement Setup

Simulation Tools and Saturation Machnisms

Included in

CROSLIGHT Crosslight Software Inc

<u>Mechanism</u>

Present 2-D Model Yes **Space-Charge Electric Fields** Yes **Field Dependent Mobilities** Yes Generation in Undepleted Regions Yes Diffusion Yes Trapping Yes Heterojunctions Yes **Thermal Effect** Partial Loading in the External Circuit No **Transient Temperature Rise** No **Carrier Bleaching**

Bandwidth of the Photodiode

Saturation Behavior of the Photodiode

Optimization of the Intrinsic Absorber and Collector		
Eraction – thickness of i-InGaAs		
$\frac{1}{\text{thickness of depletion region}}$		
Depletion Region	InGaAs, p ⁺ , Zn, 2.0x10 ¹⁹ , 50nm InP, p+, Zn, 1.8x10 ¹⁸ , 1000nm InGaAs, Zn, 2x10 ¹⁸ , 100nm InGaAs, Zn, 1x10 ¹⁸ , 150nm InGaAs, Zn, 5x10 ¹⁷ , 200nm InGaAs, Zn, 2.5x10 ¹⁷ , 200nm InGaAs, Si, 1.0x10 ¹⁶ , 200nm InGaAsP, undoped, O1.4, 15nm InGaAsP, undoped, O1.1, 15nm InP, Si, 5x10 ¹⁷ , 5nm InP, Si, 1.0x10 ¹⁶ , 600nm	<pre>{ Intrinsic InGaAs Absorber Semi-intrinsic InP Collector</pre>
	InP, n+, Si, 1.0x10 ¹⁹ , 1000nm InGaAs, n+, Si, 1.0x10 ¹⁹ , 20nm	
	InP. n+. Si. 1.0x10 ¹⁹ . 200nm InP. semi-insulating substrate.	
	Double side polished	14

Summary

- Bandwidth of our high power photodiode is RC-limited.
- Saturation effect electric field screening and band discontinuity at the interface of i-InGaAs and i-InP
- A cliff layer can be introduced to reduce space charge effect 2x degradation current
- Optimum i-InGaAs fraction = 50% in MUTC structure