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Introduction
• many applications for UV light sources but con-

ventional mercury lamps bulky, expensive, toxic
=⇒ need for LEDs based on (Al,In,Ga)N

• nitrides grown along c-axis suffer from spontaneous and piezoelectric
polarization

• active region of conventional visible LEDs:

– compressively strained InGaN QWs separated by InGaN barriers,
where difference of indium contents > 5%

– strong piezoelectric polarization effects

• active region of near UV LEDs:

– indium content in QW < 3%
=⇒ aluminum containing barriers needed for sufficient carrier
confinement

– additional spontaneous polarization effects



Polarization of c-plane AlxInyGa1−x−yN/GaN

0.0 0.5 1.0

0.0

0.5

1.0
InN

AlNx
GaN

0.15

0.10

0.05

0

-0.05

contour lines

P (x,y)+P (x,y)-P (0,0)

(C/m )

sp pz sp

2
y

increasing
In content

line of zero strain

zero total polarization discontinuity to (In)GaN achievable by adding small
amount of In to AlGaN =⇒ ‘polarization matching’



Theoretical model∗

Schrödinger equation: 8×8 k ·p Hamiltonian taking into account 3 uppermost
valence bands and lowest conduction band, doubly degenerated
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Vxc exchange–correlation potential in local density approximation

φH Hartree potential from Poisson equation
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luminescence: free carrier theory with sech–type of broadening
∗ H. Wenzel, Opt. Quant. Electron. 38, 953, 2006



Band gap renormalization (BGR) ∆Eg =−Vxc

Vxc = ζ N1/3 (exchange only)

Binet:
ζ = 2.1×10−8 eVcm

Yoshikawa:
ζ = 4.27×10−8 eVcm

≈ 10 nm ‘red’ shift of band
gap wavelength due to BGR
at λ = 375 nm
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Near UV multi quantum well active region
100 nm p-GaN

100 nm n-GaN

10 nm n- hole blockingAl Ga N0. 23 0. 77

10 nm p- electron blockingAl Ga N0. 23 0. 77

7 nm barrierAl In Ga Nx y 1-x-y

7 nm barrierAl In Ga Nx y 1-x-y

3.5 nm QWIn Ga N0. 02 0. 98



Conduction band profiles at UF = 3.32 V
GaN Al0.16Ga0.84N

Al0.16In0.02Ga0.82N Al0.16In0.04Ga0.80N



Calculated luminescence peak vs. carrier density
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• GaN barriers ‘red’ shift of luminescence peak wavelength

• InxAl0.16Ga0.84−xN barriers
x < 0.04 ‘blue’ shift of peak wavelength, decreases with increasing x
x = 0.04 constant peak wavelength



Screening of polarization charges vs. BGR
Al0.16In0.04Ga0.80N
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• no BGR: ‘blue’ shift due to the increasing compensation of the polariza-
tion charges by the injected charged carriers

• no polarization: ‘red’ shift due to shrinkage of the band gap



Fabrication and experimental setup

• growth by metal organic vapor phase epitaxy (MOVPE) on 2-inch (0001)
sapphire substrates∗

• standard LED processing technology

• 100 µm×100 µm p-contact area

• electro luminescence measured on wafer through substrate using a cali-
brated Si photodetector

• pulse duration 1 µs and repetition frequency 50 Hz (duty cycle 0.00005)
to avoid self-heating

∗ A. Knauer et al. Proc. SPIE 6797, 677970X-1, 2007



Measured luminescence spectra at I = 0.26 A
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• short–wavelength slope influenced by absorption in GaN layers

• small ripples due to interference effects

• luminescence peaks determined by Gaussian fits



Measured peak wavelength versus injection current
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• dependence of wavelength shifts on barrier composition as simulated

• different order of peak wavelengths

• measured wavelength shifts are smaller than simulated ones



Conclusions

• dependence of luminescence properties of near UV LEDs on barrier
composition investigated theoretically and experimentally

• both band gap renormalization and screening of polarization charges
contribute to wavelength shifts

• good correspondence of theoretical and experimental results

• composition of the barriers and the associated strain and polarization are
important parameters in LED optimization



Band profiles versus barrier composition (U = 0 V)
GaN Al0.16Ga0.84N
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Result of simulation by APSYS (J. Piprek)
Imax = 0.5 A, ∆I = 0.05 A

+2 nm -2 nmGaN Al0.16Ga0.84N

-1 nm 0 nmAl0.16In0.02Ga0.82N Al0.16In0.04Ga0.80N


