

Columnar quantum dots (QD) in polarization insensitive SOA and non-radiative Auger processes in QD: a theoretical study

J. Even, L. Pedesseau, F. Doré, *S. Boyer-Richard*, UMR FOTON 6082 CNRS, INSA de Rennes, France Jacky.even@insa-rennes.fr

Supported by the French ANR project BIQUINIS

8th International Conference on Numerical Simulation of Optoelectronic Devices, Nottingham, 4th September 2008

Quantum dot with axial symmetry

Geometry of quantum dot : $C_{\infty v}$ symmetry

A new description in cylindrical coordinates : $\mathbf{r}, \boldsymbol{\varphi}, \mathbf{z}$

Some references for k.p axial approximation :

¹ P. Enders and M. Woerner, SST (1996) : k-dependent 4x4 block-diag. of 8x8 Ham. (Bulk)

² C. Y. P. Chao and S. L. Chuang, PRB (1992) : k-ind. block-diag. of 6x6 Ham. (QW)

³ Y. M. Mu and S. S. Pei, JAP (2004) : k-ind. block-diag. of 8x8 Ham. (QW)

⁴K. J. Vahala and P. C. Sercel, PRL, PRB (1990) : k-ind. block-diag. of 8x8 Ham. (Qwire and Spherical QD)

⁵ M. Tadic, F.M. Peeters and K. J. Janssens, JAP, PRB (2002, 2004) k-ind. block-diag. of 6x6 Ham. (QD)

Axial approximation for mechanical properties

Acoustic phonon **band "warping**" in cubic materials

Axial approximation for the 8-band k.p strained Hamiltonian

Unstrained part : $R = -\sqrt{3} \frac{\hbar^2}{2m_0} \left[\gamma_2 \left(k_x^2 - k_y^2 \right) - 2i \gamma_3 k_x k_y \right] \approx -\sqrt{3} \frac{\hbar^2}{2m_0} \overline{\gamma} k_-^2$ $\boldsymbol{R}_{\boldsymbol{\varepsilon}} = \frac{b\sqrt{3}}{2} \left(\boldsymbol{\varepsilon}_{rr} - \boldsymbol{\varepsilon}_{\varphi\varphi}\right) \cos(2\boldsymbol{\varphi}) - i\frac{d}{2} \left(\boldsymbol{\varepsilon}_{rr} - \boldsymbol{\varepsilon}_{\varphi\varphi}\right) \sin(2\boldsymbol{\varphi}) \approx \frac{\overline{b}\sqrt{3}}{2} \left(\boldsymbol{\varepsilon}_{rr} - \boldsymbol{\varepsilon}_{\varphi\varphi}\right) e^{-i2\varphi}$ Strained part : (new proposition) $\frac{\overline{b}\sqrt{3}}{2} = \frac{1}{2} \left(\frac{b\sqrt{3}}{2} + \frac{d}{2} \right) \begin{cases} \text{InAs} & \frac{b\sqrt{3}}{2} = -1.58eV & \frac{d}{2} = -1.80eV \\ \text{GaAs} & \frac{b\sqrt{3}}{2} = -1.56eV & \frac{d}{2} = -2.25eV \\ \text{InP} & \frac{b\sqrt{3}}{2} = -1.73eV & \frac{d}{2} = -2.50eV \end{cases}$ Even et al, PRB (2008) $Q_{\varepsilon} = b \left(\varepsilon_{zz} - \frac{\varepsilon_{rr} + \varepsilon_{\varphi\varphi}}{2} \right) \qquad R_{\varepsilon} = \frac{\overline{b} \sqrt{3}}{2} \left(\varepsilon_{rr} - \varepsilon_{\varphi\varphi} \right) e^{-i2\varphi}$ $S_{\varepsilon} = -d\varepsilon_{rz} e^{-i\varphi}$ $A_{\varepsilon} = a_{c} \left(\varepsilon_{rr} + \varepsilon_{\varphi\varphi} + \varepsilon_{zz} \right)$ $\boldsymbol{P}_{\varepsilon} = \boldsymbol{a}_{v} \left(\boldsymbol{\varepsilon}_{rr} + \boldsymbol{\varepsilon}_{\boldsymbol{\omega}\boldsymbol{\omega}} + \boldsymbol{\varepsilon}_{\boldsymbol{\tau}\boldsymbol{\tau}} \right)$ Hydrostatic strain **Biaxial strain** Shear strain

Axial approximation for the 8-band k.p strained Hamiltonian

Block diagonalization of the Hamiltonian for each Fz value :

A good quantum number : total angular momentum $F_z = J_z + L_z$

Development of the wavefunction : $|J, J_z\rangle |L_z = F_z - J_z\rangle$

Basis of 8 Bloch functions u_i (i=1...8) 8 enveloppe functions of (r,z)

J _Z	Fz	-5/2	-3/2	-1/2	1/2	3/2	5/2
1/2	L _{z1}	-2 R	-1	0	+1	+2	+3
-1/2	L _{z2}	-3	-2	-1	0	+1	+2
-1/2	L _{z3}	-3	-2	-1	0	+1	+2
-3/2	L _{z4}	-4	-3	-2	-1	0	+1
3/2	L _{z5}	-1	0	+1	+2	+3	+4
1/2	L _{z6}	-2	-1	0	+1	+2	+3
1/2	L_{z7}	-2	-1	0	+1	+2	+3
-1/2	L_{z8}	-3	-2	-1	0	+1	+2

Axial approximation for the 8-band k.p strained Hamiltonian

Excited "p"and "d" states splitting predicted from symmetry analysis

Sciences Appliquées Institut National des

Auger processes in narrow gap QD

Example : InAs/Q1.18/InP truncated cone QD $E_{CH}=0.77 eV (gap) E_{CC}=23 meV E_{HH}=16 meV$ $F_{z}=1/2$ $N_{Bulk}=10^{18} \text{ cm}^{-3}$ Non-radiative processes : $\tau_{\rm CHCC} = 0.2 \mu s \tau_{\rm CHLH} = 1.1 m s (\tau_{\rm CHSH} = 14 n s)$ CB relaxation in QD : $\tau_{\rm CCCC} = 0.74 \, {\rm ps} \, \tau_{\rm CCLH} = 24 \, {\rm ps} \, \tau_{\rm CCSH} = \infty$ Hole relaxation in QD : $\tau_{\rm HHCC}$ =1.0ps) $\tau_{\rm HHLH}$ =22ps $\tau_{\rm HHSH}$ = ∞

Conclusion : further studies...

- New axially symmetric strained nanostructures
- Auger effects (gap influence, comparison WL/bulk, barrier materials, hydrostatic pressure...)
- Beyond the 8-band k.p approximation

Soline Boyer-Richard, NUSOD'08, Nottingham, 4th September 2008