

Two Models for Electro-Magnetic Wave Amplifier by Utilizing Traveling Electron Beam. by, Hesham Fares¹, Minoru Yamada¹, Yuji Kuwamura¹ and Masahiro Asada². ¹Grad. School of Natural Sci. and Tech, Kanazawa University. ²Grad. School of Sci and Eng, Tokyo Inst. of Tech.

Paper No.TuA3

Headlines

I-General Scheme of Electro-Magnetic Wave Amplifiers.
 2-Theoretical Models of Amplification Mechanism.
 2.A- Coherent Electron Wave (CEW) Model.
 2.B- Localized Electron (LE) Model.

4 3-Thermal Effect on the Amplification Gain.

4 4- Experimental Evidences.

What is the Electro-Magnetic wave Amplifiers?

4 Electro-Magnetic (EM) wave Amplifiers

Scheme of EM wave amplifier is same from microwave region to X-ray region.

► If the electric field component	$E = F(z)T_z(x, y)e^{j(\omega t - \beta z)} \rightarrow (1)$
-----------------------------------	--

F(z) is field amplitude in z-direction and $T_z(x,y)$ is transverse field distribution.

4The amplification gain (g) is,

$$\frac{\partial F(z)}{\partial z} = \frac{g}{2} F(z) \rightarrow (2)$$

Amplification Models "How does the electron see the EM-wave"?

How does the Electron see the Electromagnetic wave?

≻Form of the electron wave function:

$$\varphi_n(r) = \frac{1}{\sqrt{\ell^3}} e^{jk_n z} \to (3)$$

k_n: the electron wave number at *n*-th level .*l* : the coherent length of electron wave "electron size".

[1] Y. Kuwamura, M. Yamada, R. Okamoto, T. Kanai and H. Fares, "Observation of TM guided spontaneous emission in high refractive index optical waveguide excited by the traveling electron beam" Proc. 8th Int CLEO/QELS Conf. San Jose, CA, USA, May. 2008.

First Model "Coherent Electron Wave Model"

Spatial variation coincidence corresponds to momentum conservation

2- Gain coefficient in CEW-Model

>By some tools of statistical quantum mechanics,

$$g \propto \left| \left\langle \phi_a \left| T(x, y) e^{-j\beta_z} \right| \phi_b \right\rangle \right|^2 \rightarrow (4)$$

4Finally, the expression of amplification gain in CEW-Model

$$g(v_b, v_{em}) = \sqrt{\frac{\mu_o}{\varepsilon_o}} \frac{e J_o \tau v_b}{n_{eff} \hbar \omega} \xi \times D(v_b, v_{em}) \rightarrow (5)$$

$$\xi = \iint_{S} |T_{z}(x, y)|^{2} dx dy$$
(Coupling coefficient)

 v_b is electron velocity influenced by applied voltage V_b . $v_{em}=c/n_{eff}$ is EM-wave phase velocity. J_0 is average electron beam current density and τ is electron relaxiation time.

• D is the dispersion function controlling the gain profile,

$$D(v_{b}, v_{em}) = Sinc^{2} \left[\left\{ \frac{\sqrt{2m_{o}}}{\hbar} \left(\sqrt{eV_{b}} - \sqrt{eV_{b}} - \hbar\omega \right) - \frac{n_{eff}\omega}{c} \right\} \frac{\ell}{2} \right] - Sinc^{2} \left[\left\{ \frac{\sqrt{2m_{o}}}{\hbar} \left(\sqrt{eV_{b}} + \hbar\omega - \sqrt{eV_{b}} \right) - \frac{n_{eff}\omega}{c} \right\} \frac{\ell}{2} \right] \right]$$

4 Gain behavior with frequency variation in CEW-Model.

4 The gain peak is affected by saturation of the dispersion function.

$$g(v_b, v_{em}) = \sqrt{\frac{\mu_o}{\varepsilon_o}} \frac{e J_o \tau v_b}{n_{eff} \hbar \omega} \xi \times D(v_b, v_{em})$$

Variation of gain peak with EM frequency

Saturation of dispersion function to 1.

Second Model "Localized Electron Model"

1- Physical interpretation of amplification

One synchronize wave modulates the electron velocity to start the amplification.

4 2- Gain coefficient in LE-Model

>From the quantum mechanics point of view,

$$\widetilde{\Psi} = \sum_{v} C_{v} \Psi_{v} \to (7) \quad \text{(Total wave function)}$$

 Ψ_v is the wave function of v - electron > The form of velocity-modulation, (same as classical form)

$$\frac{\partial v_{v}}{\partial t} + \overline{v}_{v} \frac{\partial v_{v}}{\partial z} = -\frac{e}{m_{o}} \left\{ F(z)T_{z}(x, y) e^{j(\omega t - \beta z)} + c.c \right\} - \frac{v_{v} - \overline{v}_{v}}{\tau} \to (8)$$

4 Finally, The expression of amplification gain in LE-Model

$$g(v_b, v_{em}) = \xi \frac{e\mu_o J_o}{m_o} \times Y(v_b, v_{em}) \rightarrow (9)$$

 $Y(v_b, v_{em})$ is dispersion function controls gain profile,

$$Y(v_b, v_{em}) = Re\left(\left(j + \frac{1}{\omega\tau}\right) / \left(\frac{n_{eff}}{c}v_b - 1 + \frac{j}{\omega\tau}\right)^2\right), v_{em} = \frac{c}{n_{eff}} \rightarrow (10)$$

44 Gain behavior with frequency in Localized Electron Model

4The gain increases infinitely with frequency, thermal effect limits this behavior.

$$g(v_b, v_{em}) = \xi \frac{e\mu_o J_o}{m_o} \times Y(v_b, v_{em})$$

Dispersion function in gain coefficient by the LE-Model.

Variation of gain coefficient with the EM frequency by the LE-Model.

Thermal Effect on the Amplification Gain

4Real gain with thermal effect "velocity broadening around the average value",

$$g(\overline{v}, v_{em}) \approx \int_{0}^{\infty} f(v_{b}, \overline{v}) g(v_{b}, v_{em}) dv_{b} \rightarrow (11)$$

 $f(v_b, \overline{v})$ is the normalized Maxwell-Boltzmann distribution function.

$$\int f(v_b, \overline{v}) = \sqrt{\frac{m_o}{2\pi K_B T}} \exp\left[-\frac{eV_b}{K_B T}\left(\frac{\overline{v}}{v_b}-1\right)\right]$$

Where,

 \overline{v} is the average electron velocity and v_b is the real electron velocity. K_B is the Boltzmann constant and T is the absolute temperature.

4 The effect of thermal velocity broadening on gain amplification.

$$g(\overline{v}, v_{em}) \approx \int_0^\infty f(v_b, \overline{v}) g(v_b, v_{em}) dv_b$$

4The boundary between two models within THz region.

Variation of the peak values of gain coefficient with EM frequency by the CEW-Model and the LE-Model for several temperatures.

4 The effect of electron size on the gain amplification

4 The thermal effect gives same gain peaks for different coherence length.

Gain with different assumed coherence length at different temperature.

Experimental Evidences

Comparison of the emission profile with theoretical Calculation

Emission spectrum for different acceleration voltage

THANKS FOR YOUR ATTENTION