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Summary

1. A simplified model for QD Super Luminescent Diodes (SLD)
2. Single section SLD: simulated and experimental results
3. How to increase the output power:

e 2 sections SLD

« tapered active region

e saturable absorber

4. Conclusions
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A single rate equation for each
confined QD state and for the
corresponding emissions.

No information on the emission
spectrum, only on total optical
power emitted from GS and ES

Very low computational cost
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MULTI POPULATION RATE
EQUATION MODEL (MPRE)
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QD population is subdivided in
many subpopulations to
represent QD size dispersion

The photon population is
represented with a spectrally
resolved model

High accuracy in modeling of QD
based devices

High computational cost
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Carrier dynamics in QD states is
modeled by a small set of rate
equations, one for each continuous
distribution of GS , ES1 and ES2 QD
states and one for the carrier reservoir
respectively.

Inhomogeneous broadening of the QD
energy levels is taken into account in
the gain and spontaneous emission
rate calculation

Spectrally resolved model is used to
represent ASE

Reduced computational cost respect to
MPRE

Chirp is modeled considering a set of
rate equations for each group of QD
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Our simplified model:

photons
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Rsp (Z;hwi): Z(hngo,l,kjk (Z)pk (Z)

G(ha)l. —ha)l,k) = Distribution function used to model the inhomogenous
broadening of the QD energy spectrum due to dot-size dispersion
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Our simplified model: SoURCESHEY

numerical solution

Initial conditions N=N, Photons propagation: N
> £, — S*(5 (z,N, A )Az 1 z )
d%o :f(MO’E(i):O):O S ( iAZ,ﬂi) S ( ,/Il)eg +2ﬁspRSp( iAZ,ﬂl.)

5*(2)

Stationary solution of
the rate equations
without photons

Convergence

S -8 l<é&

~ new = old

Final Stationary Rate equations:
Solution: N () '
< Z
{N(z) } ~ — ==/ W(z).5(4)=0
S_i(Z,i) Stationary solution with photons
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6-mm long and 4-um wide single E Souce e

contact SLD with 6 QD layers 2,

[ 6QD layers of InAs/In, 3:Ga, sAs Dwell (GS @1290nm)
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' Simulated spectrum at EP condition
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section SLD with 6 QD layers

EXPERIMENTAL
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EP condition vs. device length
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[1 Output power at EP condition increases
exponentially with the device length, since GS
saturates at low power
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IN two-sections SLD

Uniform
injection |
[0 We consider a 1cm long device B
and use two contacts with 3
different lengths L, and L, ot
J J :
2 L
1 ?1 1 1 ? 1 g
P £
—l o
LL' |
- o i —~ 4 00 5 1‘0' 1‘5 , 2‘0 2‘5
I—]_ L2 Current density Jl [uA/um“] at EP

[0 We choose the values of J;
and search for EP condition
changing J,

[0 The device exhibits a tunability
of the EP point

; 2
Current density J2 [uA/um<] at EP
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Power tunability
INn two-sections SLD
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Power tunability
In two-sections SLD: g,.. maps
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The maximum EP power is always obtained at uniform injection

We report the net modal gain averaged along the cavity at the
GS and ES peak wavelengths as a function of control currents

In this device GS gain at uniform injection is already saturated
= no possible power improvement using two contacts
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Simulations of
tapered 6 QD layers SLDs

In order to increase the power at EP

condition we studied a flared structure
with 4mm constant width waveguide and

6mm tapered region
The output power is highly increased

thanks to the higher optical confinement |
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factor and to the larger active region area |_ =4Amm  L,=6mm
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SLD with flared waveguide
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[0 We investigate the power tunability of

[0 Tunability is improved (20-130mW)
[0 The maximum reacheable power is also
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Power tunability In 2 section SLD Eores ou:_p\cgs
with flared waveguide: g,.. map

[0 The power increase is possible since the GS mean net modal
gain in not saturated yet at uniform injection

[0 This is due to the higher saturated net modal gain in section 2
(flared) respect to the one in section 1 (uniform waveguide)
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SLD with improved output power Eages '-i

using a saturable absorber

[0 We tried to equalize the
emissions from GS and ES at \
higher output power e Pout
=200, —_—
[0 We coupled the 6mm uniform CR 30% N M) GAIN

waveguide gain region with a
2mm tapered absorbing

section with a cleaved — " ~ —
terminal facet Laps=2 mm L gain = 6 MM

[0 EP is now obtained at 1.2A:
output power is about 40 " o | I N B
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SLD with improved output power Eages '-z

using a saturable absorber

[0 ES left propagating photons which reach the absorber section are strongly
absorbed contributing therefore to the GS population inversion in the
absorber (photon recycling)

GS photons can therefore be further amplified also in the absorbing section

We can thus obtain a strongly wavelength dependent equivalent reflectivity
at the interface between gain and absorbing sections: as expected,
reflectivity is much lower for ES than for GS

EP condition is obtained for a wide range of current (800-1200mA)
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Conclusions

We proposed an alternative model to describe SLD
power spectra in a computationally efficient way.

We applied the model to the analysis of SLDs with 6
Identical QD layers. Simulations show a good
agreement with experimental results.

We investigated the power tunability range of 2
sections devices with uniform and flared waveguides

We showed that the use of a flared active section can
Increase the power tunability range and the maximum
available power

We analyzed the effects of a saturable absorber region
coupled to the gain section: increased output power
and EP tunability
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