8th International Conference on Numerical Simulation of Optoelectronic Devices

Design of 1060 nm Tapered Lasers with Separate Contacts

H. Odriozola⁽¹⁾, J. M. G. Tijero⁽¹⁾, I. Esquivias⁽¹⁾, L Borruel⁽¹⁾, A. Martín-Mínguez⁽¹⁾, N. Michel⁽²⁾, M. Calligaro⁽²⁾, M. Lecomte⁽²⁾, O Parillaud⁽²⁾, M Krakowski⁽²⁾.

⁽¹⁾ E. T. S. I. Telecomunicación, Univ. Politécnica de Madrid. Madrid, Spain.
⁽²⁾ Alcatel-Thales III-V Lab. Palaiseau, France.

Work supported by IST project 2005-035266 WWW.BRIGHTER:EU, and by MEC (Spain) projects TEC2006-13887 and TEC2007-29619.

- Introduction and goal
- Simulation model
- Results :
- Initial experimental results and simulations
- Proposal of new design
- Experimental validation
- Conclusions

High Brightness Lasers: Tapered Lasers

0.8

0.6

0.4

0.0

2µm-LOC

Broad-area Lasers

© Simple processing technology. High output power & efficiency ⊗ Poor lateral far field patterns.

Maximum output power ~ 10 W

Ridge lasers

© Single-mode in the lateral direction: Good beam quality. ⊗ High optical densities. Poor thermal behavior and low COD level.

0.2 -10 5 10 -918 mWntensity [a.u] -238 m¹

-10

0 lateral divergence angle [°]

-20

10

20

Optical output power 300 mW – 1 W

Tapered Lasers

- ➢ M² values one order of magnitude lower than BA lasers
- Beam degradation limits maximum power (P ~ 10 W)

Tapered Lasers with separate contacts

Added versatility for the improvement of the brightness (Pashke JQE 06, Odriozola JQE 08)

> Option for direct modulation of high power with low modulation current opens new application fields: Free space optical communications, laser projection displays

Tapered Lasers with separate contacts

Design and fabrication of Separate Contact Tapered Lasers at 1060 nm with high power and high modulation efficiency

Simulation model *

Electrical model (3D)

Continuity equations (electrons and holes), Poisson and capture/escape, QW gain model

Thermal model (3D)

Heat flow equation + local heat sources

Optical model (2D)

Wide-angle beam propagation method (WA-BPM) * Developed in collaboration with University of Nottingham

- Self-consistent quasi-3D solution
- Steady-state and single frequency approximations

Simulation model

Simulation of Tapered Lasers with separate contacts*

> V₀ used for initialization and reference

- $ightarrow \Delta V_{RW}$ being positive or negative to achieve the desired I_{RW}
- $> I_{RW}$ and I_{Taper} calculated by integration of the current density

* H. Odriozola et al. IEEE JQE, accepted for publication

Initial results

BROAD AREA LASERS

	Exp.	Sim.
Vertical far field - FWHM (°)	32	31.4
α _i (cm ⁻¹)	0.9	0.5
η _i	98	97.3
J ₀ (A/cm ²)	64	65.1
ΓG ₀ (cm ⁻¹)	13.8	13.7

Fitting parameters:

➢InGaAsP refractive index

≻Trap density

Internal scattering losses

Initial results

Tapered lasers with separate contacts

How to increase I_{th} with $I_{RW} = 0$?

Tapered lasers with separate contacts

Proposal of new design

Proposal of new design

Experimental validation

Simulation model is a useful tool for the design of tapered lasers with separate contacts

Good agreement between modelling and experiments

New design with low front facet reflectivity achieves experimetally high modulation efficiency

