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 Introduction and motivations

» Multi-population rate equation for carrier
dynamics in guantum dots Is presented

* Inclusion of weak external optical feedback

» Simulation results for Single Longitudinal
Mode (SLM) Laser are presented

« Comparison with an equivalent QW case

e Conclusions



QD semiconductor lasers and weak external feedback:

QD active region:

N layers of InAs/GaAs
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« It was predicted that QD lasers can be less sensitive to optical
feedback than Qwell or bulk lasers thanks to the very low
o-parameter and the high gain compression

« Several experiments and models have however shown that the
o-parameter can also be high and very dependent on working
conditions

* Needs of models to study and understand the effects of external
feedback in QD lasers



Typical models analyzing feedback in QD lasers
» do not include inhomogeneous distribution of QD size
« do not include the presence of the Excited States

« use a CONSTANT o parameter independent on working conditions
Ex. D.O'Brien et al.“Sensitivity of QD lasers to optical feedback”, Opt.Letters, May 2004
Our objective is to develop a model that:
* Includes the inhomogeneous distribution of the QD size
* includes the ES, always present with QDs at 1.3 um

» uses only physical parameters and not equivalent parameters
exctracted from small signal measurements (i.e: a-parameter,
differential gain, ....)

k The model is used to analyze the SLM laser response
versus time with weak external optical feedback
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QD population is subdivided in
many subpopulations to
represent QD size dispersion

The photon population is
represented with a spectrally
resolved model

in modeling of QD
based devices
High computational cost



Photon spectrum

O

DOS

MULTI POPULATION RATE
EQUATION MODEL (MPRE)
‘ ‘ . e,

085 09 095 1 105 1.1
Energy [eV]

0.85 0.9 0.95 1 1.05 1.1
Energy [eV]

QD population is subdivided in
many subpopulations to
represent QD size dispersion
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mode laser

in modeling of QD
based devices



A system of coupled rate equation

 one RE for carriers in the WL,

« several rate equations for carriers in the ES and GS to account
for the inhomogeneous broadening
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Refractive index change at lasing wavelength*:

eﬁtar(E ) An (Ej)+AnQD (EJ)

plasma

* Refractive index change due to carriers in WL and SCH (free carrier or plasma contribution)
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* Refractive index change due to carriers confined in the QDs: Kramer-Kronig term
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Homogeneous broadening function of refractive index
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* M. Gioannini, I. Montrosset, “Numerical Analysis of the frequency chirp in QD semiconductor lasers’,
IEEE J. Quantum Electron. October 2007



We define the electric field at the lasing wavelength of the SLM:

E(t) = E(t) &'

"\ reference pulsation (cold
slowly varying / cavity resonance)
component

Delayed differential equation coupled with the MPRE for carriers:
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QD laser under investigation:
structure and input parameters

Two examples of laser response

are presented:

« changing the feedback
strength

 P-I characteristic for given 4 Comparlison with

feedback

To define an equivalent QW
lasers the dynamic

characteristics of the solitary
QD laser have been extracted
from small signal simulations,

obtaining: a-parameter, damping
factor and resonance frequency

theory for Qwell or
bulk lasers with
external feedback
has been done



Device and material Gain spectra
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We calculate the laser response for a fixed current injection
1=300mA varying the external mirror reflectivity (t.=500 ps)
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Frequency Deviation (GHz)

We plot in the power-frequency plane the instantaneous frequency
deviation respect to the frequency of the solitary laser.

We separate the contributions due to carriers in the GS, ES, WL
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We calculate the laser response at fixed external reflectivity
(k=0.09) varying the injection current (t.~576 pSs)
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We plot the instantaneous frequency deviation respect to the

frequency of the solitary laser due to carriers in the GS, ES, WL.
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Stability has been largely studied for Qwell and bulk lasers using simple
models with one rate equation for carriers and one for the electric field:

*the stability analysis results obtained by J. Mark, B. Tromboryg,
J. Mark, IEEE JQE, vol. 28, no. 1, January 1992

*the simple analytic expression for stable operation condition by
J. Helms and K. Petermann, IEEE JQE, vol.26, May 1990

These analysis show a dependence of the stability on
a)relaxation oscillation frequency,

b)damping factor and

c)a-parameter of the lasers.

We define the “equivalent Qwell or bulk laser” as the solitary laser with
the same output power, relaxation oscillation frequency, damping factor
and oa-parameter of the QD laser.
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From the simulated IM and FM response we can extracted *:

Resonance frequency

Fitting:

| = sat

- a-Power/(1+Power/Psat)
-a=0.33 GHz? mw!
P...=400 mW

1
0 20

Equivalent o ¢

1 1
40 60
Power (mW)

1
80

100

w

Equivalent LEF

Fitting‘:

OCeqzaTH(l-I-eP'P)

ory=2.1
€,=6.2 pW-!

1
20

1 1
40 60
Power (mW)

1
80

100

Damping factor
Fitting: | | |
y=K-F 241/,
- K=1.1ns

w
o

- N N N
o [¢)] o [¢)]
T T

Damping factory (rad ns'1)

[¢,]
T

o

0 5 10 15 20 25
Z (GHD)

* H. SU, L. Lester, “Dynamic
properties of QD DFB lasers: high
speed, linewidth and chirp”,

J. Phys. D: Appl. Phys., vol. 38, 2005

and we use them for the
stability analysis of the
equivalent Qwell laser



Feedback level

The equivalent Qwell or bulk
laser in these conditions would
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Working points for the equivalent

laser with increasing current The equivalent Qwell or bulk
laser in these conditions would

be always “unstable”
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BUT the QD laser just analyzed iIs stable
for several current ranges!!
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The QD lasers are more stable than
the equivalent Qwell



Conclusions:

* We have developed a MPRE model to study QD SLM lasers with
weak external optical feedback

* We have shown two examples of calculated laser response changing
the feedback level and the current injection

e The results have been compared qualitatively with an equivalent
Qwell or bulk laser and have shown that the QD laser is more stable.

Future work:

e Understand and compare in a more quantitative way the
mechanisms leading to reduced sensitivity to feedback in QDs



mariangela.gioannini@polito.it



QD of different size are coupled together via the common WL

e Carrier in QDs are captured from the WL in the ES and relax
down in the GS

e Lasing takes place only from GS (SLM laser)
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WL: significant
frequency deviation

pulse leading edge

*The pulses generated by the
|
Instability experience more 5

=5: no frequency
deviation

frequency variation during the
pulse trailing edge respect to the =

pulse leading edge

* This is caused by the delay with the ES and WL carriers respond to
decreasing power

e The frequency deviation respect to the solitary laser and the delay
are more pronounced for the WL than the ES

« The GS can not cause instability because the frequency deviation
respect to the solitary laser is negligible



The “equivalent Qwell or bulk laser”:

— 1s modeled with one rate equation for carriers and one for the
electric field

- 1s defined as the solitary laser with the same output power,
relaxation oscillation frequency, damping factor and a-parameter
of the QD laser

- these parameters are extracted from the analysis of a small
perturbation of the solitary QD laser at the operation point

The results of QD laser simulations are compared with:

- the stability analysis results obtained by J Mark, B. Tromboryg,
J. Mark, IEEE JQE, vol. 28, no. 1, January 1992

- the simple analytic expression for stable operation condition by
J.Helms and K.Petermann, IEEE JQE, vol.26, May 1990

applied to the “equivalent QW laser”



