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Simple and low cost production
Large area
Flexible substrates
OLEDs - high brightness, large 
viewing angle

Comparison between 
OLED and LCD display, 
Eastman Kodak

Flexible LEDs
(TNO-Holland)

Why Organic Light Emitting 
Diodes (OLEDs)?
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Why organic solar cells?

• Low cost
• Large area
• Improved coverage of 

solar spectrum

Flexible photovoltaic diodes
(Johannes Kepler University,
Linz-Austria)
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Operating principle

1) Charge injection

2) Charge transport 

3) Charge 
recombination 

4) Radiative decay  

5) Extraction of 
photons

a) OLED
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HOMO – highest occupied molecular orbital
LUMO - lowest unoccupied molecular orbital



3

5

Operating principle

1) Light absorption 

2) Exciton creation 
and diffusion 

3) Charge separation 

4) Charge transport 

5) Charge collection
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b) Organic solar cell
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OLEDs – fabrication methods
• Thermal evaporation

– Properties affected by deposition rate, vacuum level, 
material purity, etc.

• Solution processing (spin-coating, dip-coating, 
ink-jet printing etc.)
– Properties also dependent on process conditions
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OLEDs – device architectures

• Single layer devices
– Transport: JOURNAL OF APPLIED PHYSICS 98 (6): Art. No. 

063709 SEP 15 2005 
– Charge traps: JOURNAL OF APPLIED PHYSICS 99 (6): Art. No. 

064509 MAR 15 2006 

• Double layer devices
• Devices with doped layers
• Stacked multilayer structures
Review: PHYSICA STATUS SOLIDI A-APPLIED RESEARCH 202 (1): 

9-36 JAN 2005
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Common OLED device architecture
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OLEDs – design considerations
• Optimizing internal efficiency – material considerations
• Optimizing light extraction efficiency

– Microcavities
• APPLIED PHYSICS LETTERS 88 (7): Art. No. 073517 FEB 13 2006, 

CHEMICAL PHYSICS LETTERS 386 (1-3): 128-131 MAR 1 2004 
– Photonic crystals

• JOURNAL OF APPLIED PHYSICS 96 (12): 7629-7636 DEC 15 2004 
– Nanopatterning

• JOURNAL OF CRYSTAL GROWTH 288 (1): 119-122 FEB 2 2006, 
APPLIED PHYSICS LETTERS 82 (21): 3779-3781 MAY 26 2003 

– Capping layers
• APPLIED PHYSICS LETTERS 89 (4): Art. No. 043505 JUL 24 2006 , 

APPLIED PHYSICS LETTERS 88 (15): Art. No. 153517 APR 10 2006, 
APPLIED PHYSICS LETTERS 88 (11): Art. No. 113515 MAR 13 2006 

– Microlens arrays
• JOURNAL OF APPLIED PHYSICS 91 (5): 3324-3327 MAR 1 2002, OPTICS 

EXPRESS 14 (14): 6564-6571 JUL 10 2006  
– Aerogel layers, nanoporous substrates

• JOURNAL OF APPLIED PHYSICS 96 (3): 1649-1654 AUG 1 2004, 
ADVANCED MATERIALS 13 (15): 1149+ AUG 3 2001 
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Modeling Problems

• Parameters needed for device simulation 
not known

• Vacuum level shifts, interface dipoles
• More complex device architectures
• Treatment of doped organic layers
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Determination of unknown 
parameters

• HOMO and LUMO levels – cyclic 
voltammetry, Ultraviolet Photoelectron 
Spectroscopy (UPS)

• Mobility – Time-of-flight, Carrier Extraction 
by Linearly Increasing Voltage (CELIV), 
Field-effect transistor (FET) 
measurements

• Fermi level – UPS, Seebeck coefficient 
measurements

12

TOF measurement
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Definition of Mobility of Free 
Charges
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μ = mobility of the free charges
Vd = drift velocity of the charges
E = electric field strength
L = distance between electrodes / thickness of film
tT = transit time 
V = voltage applied
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Limitation of time-of-flight (TOF) 
measurement

• Low mobility materials
• Thicker films (difficult for polymers) 

– Possible solution – lateral architecture JAPANESE 
JOURNAL OF APPLIED PHYSICS PART 1-REGULAR 
PAPERS SHORT NOTES & REVIEW PAPERS 43 (4B): 
2326-2329 APR 2004

• Dielectric relaxation time > transit time
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Setup for the TOF / Photo-CELIV 
measurement

16

Definition of Mobility of Free Charges
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μ = mobility of the free charges
d = sample thickness
A = voltage increase rate 
tmax = time to reach maximum extraction current
Δj = extraction current
j(0) = displacement current
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Measured Photo-CELIV curves at various delay 
times (tdel) & various applied voltage (Umax)

18

Advantages of CELIV 
measurement

• Convenient experimental setup
• Wide applicability to various materials
• Possibility to evaluate mobility of 

relatively well conducting materials

Disadvantage of CELIV measurement

• Only majority carriers can be studied
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FET mobility

• Results dependent on 
device architecture (top 
contact vs. bottom 
contact), contact 
material and film quality

• Consequence: difficult to 
compare with other 
methods, no clear 
relationship with TOF 
mobility JOURNAL OF 
PHOTOPOLYMER 
SCIENCE AND 
TECHNOLOGY 18 (1): 
75-78 2005 

JOURNAL OF APPLIED PHYSICS 100 
(2): Art. No. 024509 JUL 15 2006

20

Vacuum level alignment
• Inorganic/organic junctions

– Interface dipoles may result in shifts up to 1 eV at organic/metal 
interfaces JOURNAL OF LUMINESCENCE 87-9: 61-65 MAY 2000; up 
to 2.1 eV dipole observed APPLIED PHYSICS LETTERS 88 (5): Art. 
No. 053502 JAN 30 2006 

– Fermi level pinning APL 88, 053502 (2006)

• Organic/organic junctions
– Vacuum level shift and interface dipoles at interfaces:APPLIED

SURFACE SCIENCE 252 (1): 143-147 SEP 30 2005 
– Substrate dependence of the electronic structure of the junction

APPLIED PHYSICS LETTERS 88 (23): Art. No. 232103 JUN 5 
2006 

– Doping due to mixing at the interface: APPLIED PHYSICS 
LETTERS 83 (19): 3930-3932 NOV 10 2003 
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ITO problems
• Lots of variation in properties for ITO 

obtained from different manufacturers, 
even different batches from the same 
manufacturer.

• Very sensitive to deposition conditions 
and post-deposition treatments
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Problems for optical modeling

• N and k values often unknown
• Accurate thickness determination – step profiler 

vs. ellipsometry
– Step profiler problems

• Creating abrupt step for spin-coated films
• Underestimation of thickness for some material

– Ellipsometry problems
• Transparent substrates

– Analytical correction
– Roughening the back of the substrate, different thickness

• Change of growth modes on different substrates
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Ellipsometry Basics

• Characterize thin films, surfaces, and material microstructure

• usually determines thickness and optical constant : 
refractive index (n) and extinction coefficient (k)

• Use polarized light to shine on the sample the determine the 
relative phase change 
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Modeling the optical functions
• Lorentz model can be used for organic semiconductors, while Lorentz-

Drude model is used for PEDOT:PSS, ITO, and metal contacts.
• The Lorentz model can be expressed by the following equation:

where ε(ω) is the complex dielectric constant as a function of the 
frequency ω, ε∞ is the dielectric constant when the frequency of light ω
approaches infinity, j is the number of Lorentzian oscillators, and ωj, Fj, 
Γj are the peak frequency, strength, and damping factor of the jth
oscillator, respectively. The Lorentz Drude model is modified from the 
Lorentz model with ω0 = 0. The refractive index n and extinction 
coefficients k can be calculated from ε(ω). 

( ) ∑ Γ+−
+= ∞

j jj

j

i
F

ωωω
εωε 22
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Effective medium approximation 
(EMA)

• When the sample surface is rough, 
Bruggeman effective medium 
approximation (EMA) method needs to be 
used in the fitting process. 

• The EMA model assumes the roughness 
surface is in spherical inclusion geometry. 
The mixture of the roughness and voids 
will be equivalent to a new effective 
medium layer. 

26

Effective medium approximation 
(EMA)

(a) A rough surface. (b) An upper layer is called an effective 
medium layer which is composed of the roughness and voids 
and the lower layer is the original material. 

More complicated model needed to include substrate roughness.
ITO may have non-uniform composition with depth, resulting in 

optical functions difference.
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Bruggeman EMA model

• In Bruggeman EMA model, the equation 
showing the relationship between the effective 
medium, voids and the original material is:
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where where NN11, , NN22 and and NNee are the index of refraction for the are the index of refraction for the 
inclusions of types 1, 2 and effective medium, inclusions of types 1, 2 and effective medium, 
respectively. respectively. ff11 and and ff22 are the volume fractions of are the volume fractions of 
inclusions 1 and 2, inclusions 1 and 2, repectivelyrepectively..
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Goodness of fit without EMA method
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Goodness of fitting with EMA method
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n and k of CuPc
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Evaluate the fitting
• Compare experimental data with calculated data. 

• How low is the MSE (mean squared error)? Can it be 
reduced further by increasing model complexity? 

• Are fit parameters physical? 

• There should be no zero or negative thickness values 

• K can not be negative. 

32

Figure 1. The fitting results of the spectroscopic ellipsometry data for 
(a)BCP, (b)Alq3, (c)NPB, (d)PEDOT:PSS and (e)ITO samples: (left) the 
calculated and experimental data of the cosΔ, (right) the calculated and 
experimental data of the tanψ

Figure 2. The refractive index n and extinction coefficients k of BCP, Alq3, 
NPB,PEDOT:PSS and ITO obtained by fitting the SE data.



17

33

• Injection via
– Tunneling
– Thermionic injection

• Transport via
– Carrier hopping
– (due to material disorder)

• Recombination via
– Carrier recombine to form 

exciton
– Exciton decay leading to 

radiative emission

OLED Electrical ModelOLED Electrical Model

Bottom-emitting device

34

Electrical Models – Silvaco Simulator

• Standard carrier transport model
– One dimension Time-independent drift and diffusion model
– Continuity equation
– Poisson’s equation
– Schottky barrier with dipole lowering effect

• Carrier transport and recombination
– Mobility – field dependent (Poole-Frenkel)
– Carrier recombination – optical only (Langevin)
– Exciton diffusion and emission 
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Electrical Models – Equations

Continuity equation
- n=electron p=hole
- μn, μp = e-, hole mobility 
- Dn, Dp = diffusion constants
- R = recombination rate 

Poisson’s equation
- = permittivity of material
- ND, NA = donor, acceptor concentrations 

Schottky barrier with dipole lowering effect
- = barrier height for e-, hole
- Eg = bandgap energy
- = affinity of organic material
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Electrical Models – Equations

Field dependent Poole-Frenkel Mobility
- = zero field mobilities
- E0 = characteristic field
- E = electric field

Optical Langevin recombination
- = effective recombination mobility

(i.e. the larger or e- or hole mobility)

Exciton diffusion and emission
- F = fraction of singlets formed
- S(x) = singlet exciton density along x
- = exciton lifetime
- Ds = singlet diffusion constant
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Silvaco – Method of Implementation

• Define Structure
– Set Mesh
– Define regions
– Electrode
– Amount of doping

• Specify Materials
– Parameters
– Contacts
– Interface

• Select Numerical Method
• Solve and Extract Solution

38

Silvaco Simulator – Mesh Grid
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Electrical Models – Parameters Used

NPB 
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LiF/Al (3.3eV)

40
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Results – Typical Device with LiF/Al 
Cathode and ITO anode

Quartz(1mm)/ITO(125nm)/NPB(60nm)/Alq3(60nm)/LiF(0.5nm)/Al(70nm)
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Results – LiF/Al Cathode and Au Anode

Quartz(1mm)/Au(20nm)/NPB(60nm)/Alq3(60nm)/LiF(0.5nm)/Al(70nm)
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Results – LiF/Al Cathode and Ag Anode

Quartz(1mm)/Ag(20nm)/NPB(60nm)/Alq3(60nm)/LiF(0.5nm)/Al(70nm)
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44Quartz(1mm)/Anode/NPB(60nm)/Alq3(60nm)/LiF(0.5nm)/Al(70nm)
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Results – ITO anode and Ag Cathode

Quartz(1mm)/ITO(125nm)/NPB(60nm)/Alq3(60nm)/Ag(70nm)
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Optical model predictions
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• Modified spontaneous emission is a consequence of 
coupling between excitons and internal EM field.

• The typical OLED can be treated as organic layers 
sandwiched between two mirrors (which are the cathode 
and anode)

• The presence of Microcavity modifies the field 
distribution and thus the spontaneous emission

• Thus optical model is required to calculate the modified 
spontaneous emission

• We present two analytic models that are used widely

Optical SimulationOptical Simulation
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• Developed by Deppe et al. in 
1994

• Later extended to multi-layers 
by Dodabalapur et al.

• Basically apply summation of 
the partially reflected and 
transmitted wave packets, then 
apply FT to obtain spectrum

• Simple, popular
• Does not handle high viewing 

angles well

• Deppe et al. solved this 
problem using both the
– Quantum electro-dynamics
– Classical electro-magnetic
– Yielding same results

• Showing equivalence between 
power radiated by dipole 
antenna and probability of 
photon emission

• Assumes T=(1-R) in the 
emitting side mirror

Optical Model 1 – Wave Packet Summation
(Dodabalapur’s model)

DeppeDeppe et al, et al, ““SpontaneousSpontaneous
Emission from PlanarEmission from Planar
MicrostructuresMicrostructures””, J. Mod., J. Mod.
Opt., vol. 41, 325Opt., vol. 41, 325--344,344,
19941994
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• First developed by Lukosz [J. Opt. Soc. Am., 1977], 
– calculated dipole emission close to a plane interface

• Neyts et al. extended the method for multi-layers [J. Opt. Soc Am. 
1998]

• More complex, but handles viewing angle dependence better
• Used extensively in recent works
• Had been shown to match measured results relatively well for weak 

microcavities

Optical Model 2 – Dipole Radiation in Microcavities
(Neyts’ model)

Takes both the wide Takes both the wide 
angle and multipleangle and multiple
beam interferencebeam interference
into accountinto accountWide AngleWide Angle

InterferenceInterference
Multiple BeamMultiple Beam
InterferenceInterference
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Comparison Between the Two Optical Models

• Though both models are quite accurate, Neyts’
model depicts the characteristics of the microcavity 
better
– Spectral peak perfectly matched
– Shift of spectral peak with respect to viewing angle matched

• Dodabalapur’s model has very limited spectral shift 
with respect to viewing angle change
– Wouldn’t describe microcavity OLEDs with metallic mirrors 

very well
– This confirms that Neyts’ model has superior angular 

characteristics

58

Summary-OLEDs

• Accurate electrical modeling is crucial for 
device design

• The energy level alignment is very 
important

• Optical modeling can predict ways to 
improve extraction efficiency, but the use 
of metal mirrors without interface 
modification may be problematic
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Solar cells –principle of operation
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Solar cells – device architectures

• Schottky barrier (single-layer) cells
• Bilayer and multilayer devices
• Bulk heterojunction devices
• Dye-sensitized solar cells
• Hybrid organic-inorganic solar cells
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Solar cells – example of a hybrid 
bulk heterojunction cell

Chem. Phys. Lett. 384 (4-6), 
pp. 372-375 (2004).

Glass substrate
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• Random arrangement of 
p- and n-type molecules 
in the mixed layer 
generates large interface 
for exciton dissociation

• Resistance of mixed layer 
cell is much smaller 
when compared to p-n 
junction solar cell.

• Large current density 
can be obtained.

Bulk heterojunctions
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Solar cell modeling

THIN SOLID FILMS 
511: 214-218 JUL 
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Organic Solar Cell Electrical Simulation Organic Solar Cell Electrical Simulation 
using Silvacousing Silvaco

Involves two steps
1. Optical ray racing

Solar spectrum is constructed
Refractive index used to calculate optical intensity at each 
grid point

2. Light absorption model
Photon absorption model and carrier mobility model 
coupled to give new carrier concentration at each grid 
point
Extinction coefficient required
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• Similar to OLED simulation
• Standard carrier transport model

– One dimension Time-independent drift and diffusion model
– Continuity equation
– Poisson’s equation

• Carrier transport
– Mobility – field dependent (Poole-Frenkel)

• Light Absorption
– Photo generation model
– Shockley-Read-Hall generation/recombination model

Models used
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Models used - equations

• Standard carrier transport model same as OLEDs
• Poole-Frenkel Mobility same as OLEDs
• Shockley-Read-Hall generation/recombination model

– Etrap = difference between trap energy and Fermi energy
– TL = lattice temperature
– ,       = carrier lifetimes
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Models used - equations

• Photo generation model
– P* = effect of transmission, reflection and absorption over 

ray path
– = carrier pairs generated per photon
– y = relative distance for ray in question
– h = Planck’s constant
– = wavelength
– C = speed of light
– = absorption coefficient

y
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PG ααλη −=

*

oη

λ

α
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Parameters Calculated

• Junction characteristic
– Open Circuit Voltage

Define >1 contact as current controlled then set zero current
– Short Circuit Current

Define contact as voltage dependent and apply zero bias

• Light absorption rate distribution in device 
• Spectral characteristic

– Available photo current vs. wavelength
– Source photo current vs. wavelength
– Cathode current vs. wavelength
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Electron distribution Hole distribution
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Photogeneration Rate (i.e. Light absorption)



36

71

Cathode current vs. wavelength
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Solar cells-summary
• Less well established compared to OLED modeling
• Great potential – optimizing the cell by insertion of 

spacer layer to ensure maximum absorption by an active 
layer

• Example: ADVANCED MATERIALS 18 (5): 572+ MAR 3 2006 


