

Organic Optoelectronic Devices: Materials, Models, and Design Rules

A. B. Djurišić Dept. of Physics The University of Hong Kong

Acknowledgements: A. D. Rakić, A. Lu, The University of Queensland, Brisbane, Australia

Why organic solar cells?

招明柳繩

Flexible photovoltaic diodes (Johannes Kepler University, Linz-Austria)

- Low cost
- Large area
- Improved coverage of solar spectrum

Modeling the optical functions

- Lorentz model can be used for organic semiconductors, while Lorentz-Drude model is used for PEDOT:PSS, ITO, and metal contacts.
- The Lorentz model can be expressed by the following equation:

$$\varepsilon(\omega) = \varepsilon_{\infty} + \sum_{j} \frac{F_{j}}{\omega_{j}^{2} - \omega^{2} + i\Gamma_{j}\omega}$$

where $\varepsilon(\omega)$ is the complex dielectric constant as a function of the frequency ω , ε_{∞} is the dielectric constant when the frequency of light ω approaches infinity, *j* is the number of Lorentzian oscillators, and ω_j , F_j , Γ_j are the peak frequency, strength, and damping factor of the *j*th oscillator, respectively. The Lorentz Drude model is modified from the Lorentz model with $\omega_0 = 0$. The refractive index *n* and extinction coefficients *k* can be calculated from $\varepsilon(\omega)$.

24

arameters	NPB	Alq
Relative Permittivity	3.0	3.0
μ_{no} (cm²/ Vs)	6.1E-6	1.9E-6
$\mu_{po}~({ m cm}^2/~{ m Vs})$	6.1E-4	1.9E-8
<i>E</i> ₀ (V/cm)	4.44E5	7.1E4
<i>N</i> _c (cm ⁻³)	1E21	1E21
<i>N</i> _v (cm ⁻³)	1E21	1E21
N _A (cm ⁻³)	1E9	
<i>N</i> _D (cm ⁻³)		1E9
E _g (eV)	3.0	2.7
₯ (eV)	2.4	3.0 40

