

Angela Thränhardt

Fachbereich Physik Philippsuniversität Marburg

Collaborators: C. Schlichenmaier, I. Kuznetsova, C. Bückers, S. W. Koch, Marburg

and

J. Hader, J. V. Moloney, University of Arizona, Tucson

and

W.W. Chow, Sandia National Laboratories

Gain: Theory: 1.0, 1.125, 1.25, 1.375, 1.5, 1.625, 1.75, 1.875 Experiment: 6.0, 6.5, 7.0, 7.5, 8.3, 9.0 [mA]

PL: Theory: 0.17, 0.30, 0.40, 0.53, 0.68, 0.86 [10¹² / cm²] Experiment: 12, 16, 18, 21, 24 [mW]

Simple models: Fit to experimental data

- experimental input
- limited range of validity

Microscopic Theory: prediction

- Input = band structure parameters
- large range of validity

$\mathbf{H} = \mathbf{H}_{0} + \mathbf{H}_{Coul} + \mathbf{H}_{dip} + \mathbf{H}_{phon}$

- H₀ single particle
- H_{Coul} Coulomb interaction between carriers
- H_{dip} dipole interaction with optical field

H_{phon} carrier phonon interaction (LO phonons)

Requires controlled approximations

 Δ -terms are called correlations. They contain dephasing and scattering.

Simplest approximation: dephasing time

$$\frac{\partial}{\partial t}P\Big|_{\rm corr} = -\frac{P}{T_2}$$

Terms upto second order in V! Markov approximation: evaluate time integral by neglecting memory effects

$$\begin{bmatrix} i\hbar\frac{\partial}{\partial t} - \epsilon_k^e - \epsilon_k^h \end{bmatrix} P_k = \begin{bmatrix} 1 - f_k^e - f_k^h \end{bmatrix} \Omega_k + \frac{\partial}{\partial t} P_k|_{corr}$$
$$i\hbar\frac{\partial}{\partial t} f_k^a = -\Omega_k(t)P_k^* + \Omega_k^*P_k + \frac{\partial}{\partial t} f_k^a|_{corr}$$

Field renormalisation

Energy renormalisation

$$\Omega_k(t) = d_{cv} E^{QW}(t) + \sum_{k'} V_{k-k'} P_{k'}(t)$$

$$\epsilon^a_k(t) = \varepsilon^a_k - \sum_{k'} V_{k-k'} f^a_{k'}(t)$$

- Nonlinearities: phase space filling, gap reduction, Coulomb enhancement
- Correlation contributions: scattering, dephasing, screening
- Band structure: 8-band (10-band) k.p-theory

- $\bullet \Delta = (\hbar \omega E_G) / E_B$
- Two-band model
- Dephasing rate \rightarrow wrong lineshape and amplitude, absorption below bandgap

Dilute nitrides - GalnNAs

Technological interest:

GaAs-based laser enables AlAs/GaAs bragg reflector

Attenuation minimum of fibres around 1.55µm

Physical interest: anticrossing of conduction & nitrogen band

GalnNAs Laser at $1.3\mu m \leftarrow OK$ But at $1.55\mu m$: luminescence of experimental structures is orders of magnitude smaller, no amplification of light

Excellent theory-experiment agreement

Exp.: L. Shterengas, G. Belenky, J.-Y. Yeh, L.J. Mawst, N. Tansu, see Thränhardt et al., Appl. Phys. Lett. 86, 201117 (2005).

But at 1.55µm: luminescence of experimental structures is orders of magnitude smaller, no amplification of light ➤ material characteristic or material quality ?

- Lasing at lower density in more highly strained structure
- Consequently lower radiative and Auger losses

7nm $GaAs_{0.64}Sb_{0.36}$ QW, 6nm GaAs on both sides, $Al_{0.25}Ga_{0.75}As$ barriers

Experiment: G. Blume, P. J. Klar, G. Weiser

➤ Typ-II-Offset

Elektroabsorption = Modulation of the electric field, measurement of the absorption change

- "High spatial resolution" of 10µm x10µm
- Emission broadens with increasing carrier density
- Emission maxima = EA signals
- PL shows an almost periodic structure at high densities (solid black line)
 T=30K
 Wavelength (nm)
- For comparison: Elektroabsorption (dashed)

Experiment: S. Horst, S. Chatterjee, W. W. Rühle

• Addition of spectra shows main transitions according to $EA \leq A$

Rühle

- Hypothesis: spatial confinement in in-plane direction
- Literature: "Dot substructure" (c.f. Braun et al. JAP 88, 3004 (2000))

2 nm In_{0.1}Ga_{0.9}N MQWs with 6nm GaN barrier layers

Good agreement between theory and experiment without the use of phenomenological parameters such as scattering rates.

Exp. Daten aus B. Witzigmann et al., Appl. Phys. Lett. 88, 021104 (2006).

- Microscopic theory consistently describes semiconductor lasers/semiconductor heterostructures, predictive capability
- Good agreement between theory and experiment for gain, linewidth enhancement factor, photomodulated reflection, time-resolved photoluminescence ...
- 1.55 μm lasing in GaInNAs possible if good material quality can be achieved
- High strain preferable
- Other potential GaAs-based telecommunication material is GaAsSb
- Weak type II offset in GaAs
- Modeling of wide-gap materials equally possible