

Effect of In-Segregation on subbands in GaInAsN /GaAs quantum well for 1.3 and 1.55 micron emission wavelengths

<u>Vivek Dixit</u>, H. F. Liu, N. Xiang vdixit@nus.edu.sg Centre for Optoelectronics, National University of Singapore Singapore - 117576

Outline

- Introduction
- Indium Segregation
- Segregation model
- Experimental Evidence
- Effect of strain on Bands
- Results
- Conclusion

Centre for Optoelectronics, Dep't of electrical and computer engineering, National University of Singapore

Introduction(1): Telecommunication requirement at 1.3 and 1.55 µm wavelength optical fiber.

Introduction (2)

- Can be grown pseudomorphically on GaAs substrate.
 - Existing technology for 850 nm VCSEL
 - Good quality DBR's Al_xGa_{1-x}As/GaAs
 - Cheaper substrate and Provides Oxide confinement possibility.
- Introduction of small amount of nitrogen reduces Band-gap energy to suitable for long-wavelength (1.26-1.6 µm).
- Type-1 Band lineup.
- Deep quantum well especially in Conduction Band providing stability to electron confinement. Improved temperature performance.
- Higher differential gain from increased electron mass (m_e*).

JJAP Vol.35 (1996) pp. 1273-1275

Surface Segregation

- In 1982 Chiang *et. al.* observed the surface of thick ternary AlGaAs to be almost pure GaAs.
- This was due to gallium atoms not being immediately incorporated into the crystal rather segregate to the surface.
- In 1989 Moison *et. al.* studied In segregation in InGaAs/GaAs QW and gave thermodynamic exchange model between indium and gallium atoms.
- A phenomenological model of segregation was given by Muraki *et. al.* in 1992, stating that impinging indium atoms are first incorporated into the crystal then a portion, R of the deposited indium atoms segregates to the floating layer.
- Our experimental results also show: Presence of nitrogen enhances the indium segregation in GaInAsN QW.

Indium concentration profile for segregated QW can be deduced from Muraki's model. Presented as function of physical length using interpolation

$$x'(z) = \begin{cases} x'_0(1 - R^{z/d}) & (0 \le z \le W; Well) \\ x'_0(1 - R^{W/d}) R^{(z-W)/d} & (W < z \le W + B; Barrier) \end{cases}$$
(1.1)

- Where x'₀ is the nominal In concentration, d is monolayer thickness, W the QW thickness, z is distance in the growth direction and origin is beginning of QW and,
- \square *R*, is the segregation efficiency.

"it is surprising that little effort has been targeted to understand the effect of nitrogen incorporation on growth kinetics and indium content"

REF: Appl. Phys. Lett. 88, 141923 (2006)

Profile of the indium concentration x in the $In_xGa_{1-x}As$ and $Ga_{1-x}In_xAs_{1-y}N_y$ (12 nm) QWs; measured using XSTM.

GaInAsN – Indium segregation

RHEED oscillations with their best fittings during the MBE growth of (a) GaAs and GaInAs at T_s=530 °C, and
(b) GaInAs and GaInNAs at T_s=460 °C. The insets of (a) and (b) are the RHEED patterns taken from the growth of GaAs and GaInAsN, respectively.

RHEED Intensity $I = I_1 + I_0 \exp(-t/\tau)$ Segregation efficiency $R = \exp(-1/\tau)$

APL 89, 071905 (2006)

Hetrostructure 's Studied

- Single quantum well structures of GaInAsN /GaAs material were studied at 1.3 and 1.55µm operation wavelength.
- Diagram below shows the nominal composition and thickness of the QW.

Indium and strain distribution profiles

- Here, left figure shows the Indium concentration profile in and around QW for various segregation efficiencies; and
- Right figure shows in-plane strain profile resulting from indium segregation.

Segregation-Effect on Bands

Chosen GaInAsN QW is compressively strained. The resulting hydrostatic strain shifts the band edge of the conduction band and valence band by,

$$\Delta E_r(x', y') = 2a_r(x', y')(1 - \frac{c_{12}(x', y')}{c_{11}(x', y')})\varepsilon(x', y')$$

The shear strain breaks the degeneracy of the heavy hole and light hole in the valence band, pushing the heavy hole up.

$$\Delta S(x', y') = -b(x', y')(1 + 2\frac{c_{12}(x', y')}{c_{11}(x', y')})\varepsilon(x', y')$$

Conduction band and valence band are decoupled in GaAs based materials. The energy states and wave function of electron, heavy hole and light hole at Γ₆ can be calculated using Duke-Daniel model by solving the 1-D wave equation in Schrödinger equation like form.

$$-\frac{\hbar^2}{2}\frac{\partial}{\partial z}\left[\frac{1}{m_r^*(z)}\frac{\partial\Psi_{rl}(z)}{\partial z}\right] + U_r(z).\Psi_{rl}(z) = E_{rl}\Psi_{rl}(z)$$

Band Structure for QW's

We show a Band structure for the QW's and the space-indirect transition between light holes localized in N-rich region and electrons localized in indium rich region of the quantum well.

Centre for Optoelectronics, Dep't of electrical and computer engineering, National University of Singapore

Effect on Transition energy

Conclusion

- Indium segregation profile was modelled using interpolated Muraki's model.
- Resulting strain profile and effect on Band structure showed separate confinements for light hole and heavy holes, showing space indirect transition between light hole and electron.
- Effect of segregation mainly comes from strain instead of concentration.
- Our results suggest that only the segregations with $R \ge 0.7$ can be observed experimentally by PL. Segregations with R < 0.7 can not be resolved by PL, however it does mean their absence in the QWs.

Thank you Any Question ?