

Accurate Modeling of InGaN QWs

H. Wenzel

..translating ideas into innovation

Outline

- motivation
- theoretical model
- numerical results
 - TQW vs. SQW
 (exp.: mostly TQW, theoret.: mostly SQW, no direct comparison)
 - influence of polarization fields and doping (screening)

Motivation

- wurtzite InGaN quantum wells active region of violet, blue and green light emitting diodes and laser diodes
- spontaneous and piezoelectric polarisation fields => self-consistent solution of Poisson and Schrödinger equations necessary for computation of luminescence and gain spectra
- several shortcomings of published models
 - parabolic band approximation
 - only fundamental electron and hole states taken into account
 - excess carrier density acts as input parameter
 - boundary conditions for electro-static or Hartree potential and chemical potentials remain unclear

Energy bands and wave functions

Schrödinger equation: $8 \times 8 \mathbf{k} \cdot \mathbf{p}$ Hamiltonian taking into account 3 uppermost valence bands and lowest conduction band, doubly degenerated

$$\mathbf{H}\left(E_c^*, E_v^*, \boldsymbol{k}_{||}, \frac{d}{dz}, \right) \Psi_n(\boldsymbol{k}_{||}, z) = E_n(\boldsymbol{k}_{||}) \Psi_n(\boldsymbol{k}_{||}, z)$$

renormalization of bulk band edges

$$E_{c}^{*} = E_{c} - e\phi_{\mathsf{H}} - \frac{1}{2}V_{\mathsf{xc}}\left(\frac{n+p}{2}\right)$$
$$E_{v}^{*} = E_{v} - e\phi_{\mathsf{H}} + \frac{1}{2}V_{\mathsf{xc}}\left(\frac{n+p}{2}\right)$$

 $V_{\rm xc}$ exchange–correlation potential in local density approximation $\phi_{\rm H}$ Hartree potential from Maxwell's equation

Hartree potential

 $\operatorname{div} \boldsymbol{D} = e(p - n + N_{\mathsf{D}}^{+} - N_{\mathsf{A}}^{-}) - \operatorname{div} \boldsymbol{P}$ Poisson equation $D = -\varepsilon_0 \varepsilon_r$ arad ϕ_H $n = n^{2D} + n^{3D}, \quad p = p^{2D} + p^{3D}$ electron and hole densities $n^{2\mathsf{D}} = \sum \frac{1}{4\pi^2} \int |\Psi_{n_{\mathsf{C}}}(\boldsymbol{k}_{||})|^2 f\left(\frac{E_{n_{\mathsf{C}}}(\boldsymbol{k}_{||}) - e\phi_n}{k_{\mathsf{B}}T}\right) d^2\boldsymbol{k}_{||}$ quantum electron density $n^{3\mathsf{D}} = N_c \mathsf{F}_{1/2} \left(\frac{\max(E_{n_{\mathsf{C}}}(0), E_{\mathsf{C}}^*) - e\phi_n}{k_{\mathsf{D}}T} \right)$ free electron density similar for p^{2D} and p^{3D} macroscopic polarization $P = P_{\text{spont}} + P_{\text{piezo}}$

chemical potentials ξ solutions of bulk neutrality condition at z = 0, L

$$N_{v}\mathsf{F}_{1/2}\left(\frac{eV_{\mathsf{F}}-E_{\mathsf{g}}-e\xi}{k_{\mathsf{B}}T}\right) - N_{c}\mathsf{F}_{1/2}\left(\frac{e\xi}{k_{\mathsf{B}}T}\right) + N_{\mathsf{D}}^{+} - N_{\mathsf{A}}^{-} = 0$$

input parameter $V_{\mathsf{F}} = \phi_{n} - \phi_{p}$ Fermi voltage

Numerics

- Schrödinger equation: Galerkin method (sinus functions) => algebraic eigenvalue problem solved with LAPACK routine ZHEEV
- nonlinear Poisson equation: discretized with finite differences, solved with Newton's method
- iteration using implicit scheme where subband energies E_{n_c} are replaced by $E_{n_c} (\phi_H^k(z) \phi_H^{k-1}(z))$ in expression for n^{2D} (similarly for p^{2D}) \implies faster convergence
- luminescence and gain: free carrier theory with sech-type of broadening (FWHM 26 meV)
- T = 300 K in all simulations

Structure

layer	compound	d	D	P _{spont,z}	P _{piezo,z}
		nm	cm^{-3}	$10^{-6} \text{ C cm}^{-2}$	$10^{-6} \text{ C cm}^{-2}$
confinement	n-GaN	200	$+10^{17}$	-3.40	0
barrier	$In_{0.015}Ga_{0.985}N$	7	$+10^{16}$	-3.36	+0.22
QW	$In_{0.09}Ga_{0.91}N$	3.5	$+10^{16}$	-3.17	+1.42
barrier	$In_{0.015}Ga_{0.985}N$	7	$+10^{16}$	-3.36	+0.22
QW	$In_{0.09}Ga_{0.91}N$	3.5	$+10^{16}$	-3.17	+1.42
barrier	$In_{0.015}Ga_{0.985}N$	7	$+10^{16}$	-3.36	+0.22
QW	$In_{0.09}Ga_{0.91}N$	3.5	$+10^{16}$	-3.17	+1.42
barrier	In _{0.015} Ga _{0.985} N	7	$+10^{16}$	-3.36	+0.22
confinement	p-GaN	200	-10^{17}	-3.40	0

Quantum region

conduction and valence band edges, probability densities

- first electron (hole) states are located in first (last) QW and left (right) barrier
- poor spatial overlap of highly occupied states
- states with better overlap less occupied

- luminescence peak of SQW red-shifted and larger due to larger spatial overlap of highly occupied states
- luminescence of TQW for vanishing polarization 2 orders of magnitude smaller

Gain spectra

- gain with full polarization fields enhanced at smaller bias, reduced at larger bias, blue—shifted compared to the case of P = 0
- almost no difference in gain spectra between SQW and TQW

Impact of doping of barriers on gain peak of TQW

n-doping: $N_{\rm D}^+ = 5 \times 10^{18}$, p-doping: $N_{\rm A}^- = 5 \times 10^{18}$

almost no difference in gain peak dependence on radiative current density or on carrier density between undoped and doped barriers

Summary

- self-consistent solution of the Poisson equation and an eight-band k · p Schrödinger equation for wurtzite strained InGaN quantum wells taking into account proper boundary conditions for the Hartree and chemical potentials
- application to SQW and TQW structures embedded in a p-n junction
- stronger and red-shifted luminescence of SQW compared to TQW for the same Fermi voltage (bias)
- enhancement of luminescence and gain at lower bias due to polarisation fields
- almost identical gain spectra of SQW and TQW structures
- only minor impact of doping of barriers on gain