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Outline

Importance of green LEDs/Lasers

How to circumvent piezoelectric field effects
● Growth on nonpolar or semipolar planes
● Embedding a δ-layer into a SQW

Simulation & Experiment results

Overall conclusion
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LED BLU

← CCFL

← Small chip LED

# of LEDs: 2,160

► Low power consumption

► Superior color representation

► No fan and no heat sink

IMID 2006

40" LED
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Why Green LEDs/Lasers So Important?

LED BLU for LCD

Samsung LCD 
HDTV

Projector
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High In-composition for long-wavelength 
tuning

CQ-related issues (trap at deep localized 
states and nonradiative spots)

High PEC:
Wavefunction overlap
Carrier transport

High Ith, Low ηint : DQW, <485nm

Problems with Thin InGaN MQW 
for Long-Emission Wavelengths
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Carrier Transport in 
Thin InGaN/AlGaN DQW

100%   
PEC

2nm-thick In0.15Ga0.85N 7nm-thick Al0.05Ga0.95N

×
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Problems with Thick InGaN QW

Wavefunction overlap
→ long τc

Low In-composition for 
long-wavelength tuning

5nm-thick In0.15Ga0.85N SQW
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How To Tackle (1):
Growth on semipolar or nonpolar templates 
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nonpolar
A-plane
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LED performance : C-plane

C-sapphire ≈ C-GaN

ηext ≈ 35%(blue), 30%(green)

LED performance : semipolar or nonpolar

r-sapphire (ηext ≈ 0.4%) < semipolar GaN (4~5%) at 420nm

Laser performance : C-plane
C-sapphire < C-GaN

Lasing is not feasible

Laser performance : semipolar or nonpolar

)0211(

Dr. Nishizuka, APL, 2004
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How To Tackle (2):
Thick SQW with Embedded AlGaN δ-Layer

less In-composition for long-wavelength tuning 
(compared to thin SQW)

Increase wavefunction overlap (compared to 
thick SQW)

Uniform carrier distribution
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Layer Structure & Growth

MOVPE epitaxy growthLayer Structure
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Numerical Models:
Inorganic Semiconductor Devices
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< Poisson’s equation >

< Drift-Diffusion equation >

< effective-mass Schrödinger equation >
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SQW with δ-Layer (=DQW):
Wavefunction Overlap

• 5-nm In0.15Ga0.85N QW   
• 10-Å Al0.05Ga0.95N δ-layer

CathodeAnode
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SQW with δ-layer:
Carrier Transport
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Band Structure of QW with δ-layer

[4nm SQW] [0.4nm δ-layer] [0.8nm δ-layer]

[1.0nm δ-layer] [1.4nm δ-layer] [2nm SQW]
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Experimental Results:
PL peak wavelength and PL lifetime

PL decay dynamicsPL spectra & efficiency
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PL Spectra:
Different δ-Layer Thickness

► QW with 1nm δ-layer requires about 4% less indium for green

emission, compared to 2-nm-thick SQW



17

Wavefunction Overlap:
Different δ-Layer Thickness
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Overlap Integral:
Different Indium Composition
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Overlap Integral:
Different Aluminum Composition

In=15%
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Overlap Integral:
δ-doping
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Summary

The δ-layer offers an extra degree of freedom in tuning 
the emission wavelength 

The δ-layer enable us to tune long-wavelength with 
lower indium composition 

The δ-layer increases the wavefunction overlap between 
holes and electrons, the PL lifetime by which is 
expected to shorten. 


