Super-Luminescent LEDs—Modeling of Emission Spectra and LI-Characteristics

<u>Martin Loeser</u>^a, Lorenzo Occhi^b, Christian Vélez^b, Raffaele Rezzonico^b, and Bernd Witzigmann^a

^a Computational Optoelectronics Group Integrated Systems Laboratory, ETH Zurich, Switzerland

^b EXALOS AG, Zurich, Switzerland

loeser@iis.ee.ethz.ch

Integrated Systems Laboratory

SLEDs as Attractive Light Sources

- Optical sensing: optical coherence tomography (biomed, material sciences,...)
- Navigation: fiber-optic
 gyroscopes
- Fiber-optic sensors (temperature, pressure, strain,...)

Integrated Systems Laboratory

Department of Information Technology and Electrical Engineering ETH

Application of TCAD for SLED Design

- Main design goals:
 - High output power
 - Broad 3dB bandwidth
 - Short coherence length.
- How can simulations help to design SLEDs with optimized performance?
- Comparison of simulated and measured data for two edgeemitting SLEDs.

- Simulated Geometry and Fundamental Equations
- Electro-Opto-Thermal Simulation Results
- Applicability of the ASE Model
- Conclusion and Outlook

Simulated Geometry & Fundamental Equations

Integrated Systems Laboratory

Benchmark: Edge-Emitting SLED

- Benchmark devices: two SLEDs, cavity length 500µm and 950µm.
- Electro-Opto-Thermal simulation
- Simulated geometry: 2D (transverse cut)

2D simulation model

Simulation Model—Electro-Thermal Problem

 \Im

$$\mathbf{j}_n = -e(\mu_n n \nabla \Phi - D_n \nabla n + \mu_n n P_n \nabla T)$$
$$\mathbf{j}_p = -e(\mu_p p \nabla \Phi + D_p \nabla p + \mu_p p P_p \nabla T)$$

Drift-Diffusion-Model

$$\nabla \mathbf{j}_{\mathbf{p}} = -q \left(\tilde{R} + R_{stim}^{ASE} + \frac{\partial p}{\partial t} \right)$$
$$\nabla \mathbf{j}_{\mathbf{n}} = q \left(\tilde{R} + R_{stim}^{ASE} + \frac{\partial n}{\partial t} \right)$$

Continuity Equations

 $\nabla(\epsilon \nabla \Phi) = -q(p+n+N_D^++N_A^-)$

Poisson Equation

$$c_{tot}\frac{\partial T}{\partial t} - \nabla(\kappa_{th}\nabla T) = H$$

Heat Equation

Integrated Systems Laboratory

3D Optical Problem

Langevin force equation (electric field)

$$\left(\nabla^2 + \frac{\omega^2}{c^2}\epsilon_\omega\right)E_\omega(x, y, z) = F_\omega(x, y, z)$$

Assumption: complete set of pairwise orthonormal transverse modes $\Psi_n(x,y)$

Decomposition of the electric field into modes

$$E_{\omega}(x, y, z) = \sum_{n} (\Psi_{n}(x, y) \ \psi_{n}(z, \omega))$$

2D - FEM 1D - Green's functions

Integrated Systems Laboratory

Model Solution of 3D Optical Problem: $2D \times 1D$

- Simulation in 2D
- Longitudinal problem solved analytically
- Gain & spontaneous emission constant in *z*-direction

Integrated Systems Laboratory

Electro-Opto-Thermal Simulation Results

Integrated Systems Laboratory

Simulation Results: 500µm Cavity

Ll-curve: measurement and simulation.

$$P = \int_{\lambda} P_{ASE}(\lambda) \ d\lambda$$

Integrated Systems Laboratory

Measured and simulated ASE spectra, drive current from 50mA to 150mA in steps of 20mA.

Simulation Results: 950µm Cavity, Thermal Simulation

to 400mA in steps of 50mA.

Integrated Systems Laboratory

Shift of ASE Peak Wavelength

- Blue shift:
 - Bandfilling effects for high carrier concentrations
 - Many-body effects (Coulomb matrix)
- Red shift:
 - Self-heating
 - Many-body bandgap renormalization
- Long device: U-shape
- Short device: L-shape

Integrated Systems Laboratory

Why Do the Benchmark Devices Show Different Shifts?

In the regime of operation of our SLEDs the gain shows a blue shift with increasing carrier density. Smaller carrier concentration in long device due to higher stimulated recombination.

Cavity Length: Output Power vs Bandwidth

- Output power saturates due to carrier saturation (stimulated recombination).
- 3dB bandwidth decreases as the MQW carrier concentration decreases.

New Design: Non-Identical QWs (950µm Cavity)

Output power: 42mW old design, 44mW new design

3dB ASE bandwidth: 21nm old design, 57nm new design.

Conclusion & Outlook

- A two-dimensional simulation tool is benchmarked with spectrally resolved measured data from existing devices and excellent agreement is achieved.
- The simulator is applicable for a multitude of designs (different active regions, modified cavity length, etc.).
- Simulations indicate that QW carrier population and temperature play an all-important role for both shape and position of the ASE spectrum.
- Variations in the cavity length reveal the trade-off between output power and bandwidth.
- Outlook: Transition to full 3D.

Acknowledgments

- Dr. Friedhard Römer
- Dr. Stefan Odermatt
- Alexandra Bäcker

Integrated Systems Laboratory

Department of Information Technology and Electrical Engineering

Synopsys[®]

