Temperature-Dependent Dynamic Behaviors of Organic Light-Emitting Diodes

Outline

Basic principle of operation

Numerical model

Simulation & Experiment results

> Overall conclusion

Organic Light-Emitting Devices:

Low cost

- Self-emitting: require no backlight, reducing thickness
- Direct replacement for a conventional LCD
- Viewing angle up to 160 degrees
- Response of 1000 times faster than LCDs

Comparison with TFT-LCD

Viewing angle

Power consumption

IMID 2006 display products by Samsung SDI

Color Representation

IMID 2006 display products by Samsung SDI

Considerations for Long Lifetime

- Dark spot
 - impurity
 - defects

EL distribution

✤ Heat

- glass transition temperature
- Electrochemical factors (stress)
 - device structure for balancing holes and electrons
 - doping
 - injection layers
 - surface quality between electrode and organic layers

Energy Band Diagram

Numerical Models (1D):

 $\begin{array}{ll} < \text{Poisson's equation} > & < \text{Singlet exciton rate equation} > \\ \hline \frac{\partial E(x,t)}{\partial x} = \frac{q}{\varepsilon} \Big(p(x,t) - n(x,t) + N_D - N_A \Big) & \\ \hline \frac{\partial S(x,t)}{\partial t} = \frac{1}{4} \overline{r(x,t)} n(x,t) p(x,t) + D_s \frac{d^2 S(x,t)}{dx^2} - \frac{S(x,t)}{\tau_s} - Q(x) \frac{S(x,t)}{\tau_q} \\ < \text{Drift-Diffusion equation} > & \\ \hline \frac{\partial n(x,t)}{\partial t} = \frac{1}{q} \frac{\partial J_n(x,t)}{\partial x} - \overline{r(x,t)} n(x,t) p(x,t) & \\ \hline \frac{\partial p(x,t)}{\partial t} = -\frac{1}{q} \frac{\partial J_p(x,t)}{\partial x} - r(x,t) n(x,t) p(x,t) & \\ J_n(x,t) = q\mu_n(x,t) n(x,t) E(x,t) + kT\mu_n(x,t) \frac{\partial n(x,t)}{\partial x} & \\ \end{bmatrix} \begin{array}{l} \text{Langevin} & < \text{Luminance} > \\ \text{Luminance} > \\ \text{Lumevin} & \text{Recombination} \\ \text{Recombination} & \\ \text{Recombination} & \\ \text{Recombination} & \\ \text{Lumevin} & \\ \text{Recombination} & \\ \text{Lumevin} & \\ \text{Recombination} &$

< Field- and temperature-dependent mobility >

Poole-Frenkel type
mobility model
$$\mu(E(x,t),T) = \mu_0(T) \exp\left(\sqrt{\frac{E(x,t)}{E_0}}\right)$$

NPD-Alq₃ OLED

NPD-Alq₃ OLED under EL test

Vacuum Evaporation System at Kyoto Univ.

EL Spectrum

Validation of Numerical Model

Simulation Results -Effects of Δ HOMO-

Recombination rate

• Similar behaviors for **ALUMO**

Temperature-Dependent Device Performances

Temperature-Dependent Current Balance=J_r/J

Temperature-Dependent Dynamic Behaviors of OLED

Spatial Distribution of Carrier Density

Turn-on cycle (charge)

Turn-off cycle (discharge)

Exciton Distribution

Dirac delta function ("seed exciton") \rightarrow Diffusion

Response to a Train of Voltage Pulses

Summary

- The luminance decreases and the turn-on voltage increases as the temperature decreases due to a reduction in thermally activated hopping speed.
- It delays not only the startup of EL upon turn-on of OLEDs, but also the discharge upon turn-off.
- The device efficiency is increased with decreasing temperature due to enhanced charge-balance factor.
- The pulse-to-pulse interference by the space charge effects is more significant at lower temperatures.