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SolitonsSolitons

The concept of solitary 
waves was first 
introduced by Scott 
Russell in 1834 after he 
had observed that a 
water wave preserved its 
original shape over a 
very long distance in a 
Scottish canal.  

The concept of solitary 
waves was first 
introduced by Scott 
Russell in 1834 after he 
had observed that a 
water wave preserved its 
original shape over a 
very long distance in a 
Scottish canal.  

The word 'soliton' was first introduced 
by Zabusky and Kruskal in 1964 when 
they discussed the particle-like 
behaviour of numerical solutions of the 
Korteweg deVries equation.

In 1895, Korteweg and 
deVries developed a 
mathematical theory to 
study the solitary waves 
observed by Scott Russell.  
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Nowadays, various types of solitons have 
been discovered in almost all area of physics.  
About a hundred different types of nonlinear 
partial differential equations have been 
found to have soliton solutions, such as the 
Toda lattice, Sine-Gordon, and nonlinear 
Schrodinger equations.  

Solitons :
•ion-acoustic waves in plasma, 
•magneto hydrodynamic waves in plasma, 
•anharmonic lattice, 
•longitudinal dispersive waves in elastic rods, 
•pressure waves in liquid-gas bubble mixtures, 
•thermally excited photon packets in low-
temperature nonlinear crystals, 
•propagation of magnetic flux on a Josephson line, 
•electrical signals in nonlinear transmission lines
•light waves in optical fibres

Solitons :
•ion-acoustic waves in plasma, 
•magneto hydrodynamic waves in plasma, 
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•thermally excited photon packets in low-
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•propagation of magnetic flux on a Josephson line, 
•electrical signals in nonlinear transmission lines
•light waves in optical fibres
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Dispersion Effect

As an optical pulse travels along a fibre, the 
shorter wavelength components travel faster and 
the longer wavelength ones tend to fall behind.  
This produces a difference in frequencies between 
the leading and trailing edges of the pulse.  This is 
the so-called "optical dispersion" which causes 
conventional optical pulses to broaden along the 
fibre thus limiting the maximum bit rate.
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The material dispersion parameter for silica as a function of 
wavelength  (Payne & Gambling 1975)
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The waveguide dispersion coefficient versus normalized 
frequency   (Gambling et al. 1981)
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Propagation of a fundamental soliton pulse in a 
purely dispersive optical fibre
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Propagation of a fundamental soliton pulse in a 
purely dispersive optical fibre
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Nonlinear EffectNonlinear Effect

For a very intense optical pulse, the fibre refractive 
index increases as the intensity of the light increases.  
Named after a 19th century Scotsman, John Kerr, this 
nonlinear effect has come to be known as the Kerr 
optical effect (or the Kerr nonlinearity). 
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T∂
∂φω=Δ

The time dependence of Δω can be treated as a 
frequency chirp which is due to the Self-Phase 
Modulation. 

Self-phase modulation is the modulation of a 
pulse's own phase as the result of exciting the 
Kerr nonlinearity.

Δω
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The frequency output spectra of a 3.35μm core diameter silica fibre
(Stolen & Lin 1978)

The frequency output spectra of a 3.35μm core diameter silica fibre
(Stolen & Lin 1978)
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Time domain solution for the propagation of soliton 
in an optical fibre with only nonlinear effect
Time domain solution for the propagation of soliton 
in an optical fibre with only nonlinear effect
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Frequency domain solution for the propagation of 
soliton in an optical fibre with only nonlinear effect
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Solitons can propagate without distortion 
for a very long distance if the 

propagating medium's nonlinear effect 
and its dispersion effect cancel each 

other.  
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1973, Hasegawa and Tappert (optical soliton theory) 1973, Hasegawa and Tappert (optical soliton theory) 

1980, Mollenauer (first experimental demonstration) 1980, Mollenauer (first experimental demonstration) 

Network Technology Research Centre Network Technology Research Centre Network Technology Research Centre 

1834, John Scott Russell observe the solitary wave on water1834, John Scott Russell observe the solitary wave on water

1955-1975, theory of solitary wave propagation is 
developed
1955-1975, theory of solitary wave propagation is 
developed

1987, P. Emplit made the first experimental 
observation of the propagation of a dark soliton
1987, P. Emplit made the first experimental 
observation of the propagation of a dark soliton

A Brief  History of Fibre SolitonA Brief  History of Fibre Soliton
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1993, Nakazawa (stable soliton transmission at 
10Gbit/s over 180 million km) 
1993, Nakazawa (stable soliton transmission at 
10Gbit/s over 180 million km) 

1991, Bell Lab transmitted solitons error-free at 2.5 gigabits 
over more than 14,000 kilometers
1991, Bell Lab transmitted solitons error-free at 2.5 gigabits 
over more than 14,000 kilometers

1991, Ellis proposed the idea of dispersion manage 
(DM) soliton ( help to reduce sideband instability 
and dispersive wave)

1991, Ellis proposed the idea of dispersion manage 
(DM) soliton ( help to reduce sideband instability 
and dispersive wave)

A Brief  History of Fibre SolitonA Brief  History of Fibre Soliton
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A Brief  History of Fibre SolitonA Brief  History of Fibre Soliton

Network Technology Research Centre Network Technology Research Centre Network Technology Research Centre 

1999, LeGuen (1.02Tbit/s soliton DWDM 
transmission over 1000km of standard fibre with 
100km amplifier span) 

1999, LeGuen (1.02Tbit/s soliton DWDM 
transmission over 1000km of standard fibre with 
100km amplifier span) 

1996, Mollenauer (8x10Gbit/s transoceanic error 
free soliton WDM transmission) 
1996, Mollenauer (8x10Gbit/s transoceanic error 
free soliton WDM transmission) 

1995, Nakazawa successfully used part of the Tokyo 
metropolitan optical loop network to demonstrate 
the error free transmission of soliton at 20Gbit/s 
over 2000km

1995, Nakazawa successfully used part of the Tokyo 
metropolitan optical loop network to demonstrate 
the error free transmission of soliton at 20Gbit/s 
over 2000km
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2004, Koji Igarashi (shortest fiber soliton pulse, 15.6 
fs)
2004, Koji Igarashi (shortest fiber soliton pulse, 15.6 
fs)

2001, Algety Telecom. Practical soliton transmission 
system carrying real traffic data was deployed 
2001, Algety Telecom. Practical soliton transmission 
system carrying real traffic data was deployed 

2000, Corvis Corp. filed for an IPO, and spent $100 
million to acquire France-based Algety Telecom, 
which develops soliton- based DWDM transmission 
systems

2000, Corvis Corp. filed for an IPO, and spent $100 
million to acquire France-based Algety Telecom, 
which develops soliton- based DWDM transmission 
systems

A Brief  History of Fibre SolitonA Brief  History of Fibre Soliton
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Soliton Propagation Equation

The general soliton propagation equation in an optical fibre
can be expressed as
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Methods for Solving Nonlinear 
Soliton Propagation Equation

• Fourier Series Analysis Technique
• Inverse Scattering Method
• Split-Step Fourier Method
• Perturbation Method
• Finite Element Method

• Fourier Series Analysis Technique
• Inverse Scattering Method
• Split-Step Fourier Method
• Perturbation Method
• Finite Element Method
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Time Domain Frequency Domain
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Inverse Scattering Method

The inverse scattering method (ISM) was introduced by 
Gardner et al. and used by Zakharov and Shabat, which can be 
used to solve the above nonlinear Schrodinger equation.  The 
ISM maps the solution of the nonlinear partial differential 
equation on solutions of linear differential equations.  The 
linear equations can be solved by standard methods.  The 
transformation back yields the solution of the nonlinear 
equation for arbitrary initial conditions.  
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Fundamental soliton solution
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Second order soliton solution
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Perturbation Method

In some cases, an exact analytic solution cannot be 
obtained by ISM, hence the PM should be used to take the 
effect of higher order terms and fibre loss into account.  
Due to the limitation of the PM, the value of the loss factor 
Γ cannot be greater than a certain value (typically 〈0.015) 
otherwise inaccurate results will be obtained.  For a 
conventional fibre with fibre loss 0.2dB/km and an input 
soliton pulse width of 6ps, the value of Γ is calculated to be 
0.04.  This value of Γ is obviously much larger than 0.015, 
hence the PM cannot be applied in this practical case. 
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Split-Step Fourier Method

Nonlinear partial
differential equation to

be solved

Nonlinear part which
is solvable in the time

domain

Split into linear and
nonlinear parts

Linear part which is
solvable in the

frequency domain

Analytic solution
obtained in the time

domain

Apply the Initial Condition

Solution obtained after
propagated a distance
of     along the fibre

Analytic solution
obtained in the

frequency domain

Solution obtained in
frequency domain

after a distance of 
along the fibre

Apply the initial condition

Apply FFT

Final solution obtained
after propagated a

distance of x

Apply inverse FFTThe required
propagation

distance
achieved

Yes

No

Δx

Δx

A large number of sampling points is 
required by the SSFM (〉200) and this 
method is highly numerical.  The FFT is 
heavily used to transform solutions 
between time and frequency domains 
after every small propagation distance 
of Δx (since error is proportional to Δx2, 
which means Δx should be smaller then 
10-3 in order to maintain an accuracy of 
10-6).  For a propagation distance of one 
soliton period, we may well need to use 
the FFT as many as 3000 times and 
cumulative errors due to the heavy use 
of FFT may occur
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Nonlinear Eq.

Linear  Part  Solution    Linear  Part  Solution    

纯
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Nonlinear Part SolutionNonlinear Part Solution

纯
音NN

Initial 
Initial 

Condition
Condition

Boundary Condition

Boundary 
Boundary Condition

Condition

Moving Node ControlMoving Node ControlMoving Node Control

Split-Step Finite Element Analysis Technique
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Initial 
Condition

EEEEEEMove 
Node

Total distanceTotal distance

Linear
Nonlinear
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Propagation of Soliton in a Dispersion-Shifted Fibre
(Γ=0.37)
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Soliton Interaction
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Optical solitons have been considered as potential 
information carriers in high bandwidth optical 
fibre communication systems.  In a soliton digital 
communication system, it is necessary to determine 
the optimum separation between adjacent solitons.
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Soliton Interaction (φ=π/4, ΔT=7, B=Γ=0)
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Soliton Interaction (φ=0, ΔT=7, B=Γ=0)
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Propagation of two fundamental solitons in a lossless fibre
(φ=0, ΔT=0, B=Γ=0)
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Propagation of two fundamental solitons in a lossless fibre
(φ=-π, ΔT=7, B=Γ=0)
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Propagation of two fundamental solitons in a lossless fibre
(φ=-π/2, ΔT=7, B=Γ=0)
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Propagation of two fundamental solitons in a lossless fibre
(φ=-π/4, ΔT=7, B=Γ=0)
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Propagation of a fundamental solitons in a lossless fibre
with an initial requency chirp of C=0.25

Initial frequency chirpInitial frequency chirp

)exp()(sech)exp(),0(),0( φφ jTAjTuTuc ==

φ = −CT2
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Propagation of a fundamental solitons in a dispersion-
shifted fibre with an initial requency chirp of C=0.25

α=0.2dB/km
β2=-2ps2/km
β3=0.1ps3/km
t0=0.08ps
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Propagation of a fundamental solitons in a dispersion-
shifted fibre with an initial requency chirp of C=0.25

α=0.2dB/km
β2=-2ps2/km
β3=0.1ps3/km
t0=0.01ps



Two-core fiber couplers have been the subjects of theoretical and  
experimental  research  for their potential in optical signal processing and 
switching. 

Many useful devices can be constructed from the two-core fiber couplers, 
such as optical switches, wavelength-selectors and two-core fiber 
amplifiers.

Two-core fiber couplers
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U

V

Nonlinear Directional CouplersNonlinear Directional Couplers
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A widely used theory for the study of devices based on 
evanescent-field coupling.  

21211
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E1(2): Single-mode field amplitudes 

β1(2) : Single-mode propagation constants in cores 1 and 2 

C12(21): Coupling coefficients between the two cores



44

Nonlinear Directional CouplersNonlinear Directional Couplers

Directional couplers are commonly used passive devices in 
optical communication systems. The general coupled-mode 
equations are given by
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R is the normalized coupling coefficient; R’ and R” are the normalized 
first-order and second-order coupling-coefficient dispersions.  The light 
intensities in the two waveguides are given by U=|a1|2 and V =|a2|2, 
respectively.  
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For twin-core couplers, C12 = C21
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CoupledCoupled--Mode EquationsMode Equations
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Parameters Parameters 

aa11(Z,T) , a(Z,T) , a22(Z,T)  : Normalized Amplitude(Z,T)  : Normalized Amplitude
Z : Normalized DistanceZ : Normalized Distance
R : Normalized Coupling CoefficientR : Normalized Coupling Coefficient
R’: Normalized Coupling Coefficient      R’: Normalized Coupling Coefficient      

DispersionDispersion
R”: Group Velocity DispersionR”: Group Velocity Dispersion
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Normalized Coupling Normalized Coupling 
CoefficientCoefficient

From the coupled equation,  From the coupled equation,  
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tto  o  : width of the pulse: width of the pulse
C : coupling coefficientC : coupling coefficient
k”: dispersion property of group velocityk”: dispersion property of group velocity
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Normalized Coupling Normalized Coupling 
CoefficientCoefficient
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R is affected by 
- refractive index of the fiber
- wavelength of the waveguide
- core radius 
- center to center separation between 2 cores.
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Coupling CoefficientCoupling Coefficient
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ko & k1 : Normalized modified Bessel function
n1 : refractive index of the core
n2 : refractive index of the cladding
p : core radius
s : center to center separation between 2 cores  
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Normalized DistanceNormalized Distance
From the coupled equation,From the coupled equation,

k”: group velocity dispersion k”: group velocity dispersion 
ttoo: width of the pulse: width of the pulse
z : length of the fiber.z : length of the fiber.
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Normalized DistanceNormalized Distance
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From the equation, Z is affected by
- wavelength of the waveguide
- frequency of the waveguide
- width of the input pulse
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Normalized Coupling Normalized Coupling 
Coefficient DispersionCoefficient Dispersion

"
''

2
0

k
tCR −

=

to  : width of the pulse
C : 1st order coupling coefficient
k”: dispersion property of group velocity
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Normalized Normalized Second OrderSecond Order DispersionDispersion
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C : 2nd order coupling coefficientC : 2nd order coupling coefficient
k”: dispersion property of group velocityk”: dispersion property of group velocity



Most previous research on pulse propagation in a two-
core fiber coupler was based on twin-core fiber 
couplers. Using the Fourier series analysis technique, 
we have studied the pulse propagation in the non-
identical core fiber coupler.  



A two-core fiber coupler contains two parallel cores

Core 1 (ρ1, nco1)

Core 2 (ρ2, nco2)

Cladding (ncl)

Cladding (ncl)

Twin-core coupler: ρ1= ρ2, Δ1 = Δ2

Two-nonidentical-core coupler: ρ1≠ ρ2, Δ1 ≠ Δ2

d

Core-to-core separation: d

Structure of a Two-core Fiber Coupler
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In two-nonidentical-core couplers, the commonly used 
symmetric equations can no longer be adopted. 

In twin-core couplers, the linearly coupled NLSE describing pulse 
propagation in the coupler are symmetric. 



Modeling of two-nonidentical-core coupler
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C12 (21) coupling coefficient between the two cores

first order coupling coefficient dispersion'
)21(12C

second order coupling coefficient dispersion''
)21(12C

group velocity of the two cores)2(1gv

group velocity dispersion of the two cores''
)2(1k

Ref: P. Shum and M. Liu, “Effects of intermodal dispersion on two-nonidentical-core coupler with different radii,” IEEE  Photonics Technology Letters,
vol. 14, pp. 1106- 1108, 2002



Nonlinear Equation 
to be Solved

Solution of the 
Original Problem

Problem in the 
Frequency Domain

First Order Partial 
Differential Equations

Solution in the 
Frequency Domain

Fourier Series 
Expansion

Inverse Fourier 
Series

Frequency DomainTime Domain

Fourier series analysis technique (FSAT) 



Fourier Series Analysis Technique Fourier Series Analysis Technique 
(FSAT)(FSAT)

Simple, efficient, and easy to understand

Less sampling points 



Numerical Results Analysis
The initial conditions are given by:

)(),0(1 TAsechTa =

0),0(2 =Ta

A -- normalized amplitude of the input optical pulse

Switching threshold amplitude A_th is defined as the value of A at which the 
output of each core is equal
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Fourier Series Analysis Technique
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Multiply the equation by the conjugate of exp(jkεT) and integrate 
the whole equation with respect to T from -π/ε to π/ε, an ordinary 
differential equation can be obtained:
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For the nonlinear term we have,
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where the function u(x)* is the complex conjugate of u(x) and 
parameters μ, ν and λ are all integers between -N and N.  The 
values of μ, ν and λ should satisfy the following condition

n=+− λνμ

where n is an arbitrary value.  Under this circumstance 
the expression can be simplified as
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Therefore, we have



Effects of radii ratio on the power transfer

Power transfer F should be 0.11.0 ≤< F

For a given radii ratio, the power 
transfer decreases with the increase 
of the core separation 

For a certain core separation, the 
power transfer decreases when 
ρ2/ρ1 reduces

Power transfer is maximum (F=1) 
when the two cores are identical 0
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Coupling length Lc

For a certain core separation, the 
normalized coupling length 
decreases as the difference of two 
cores increases 

For a given radii ratio, the 
normalized coupling length increases 
with the core separation  
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For a certain core separation, the 
normalized coupling length 
decreases as the difference of two 
cores increases 

For a given radii ratio, the 
normalized coupling length increases 
with the core separation  
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The intermodal dispersion (or coupling-
coefficient dispersion) in a directional coupler 
can cause pulse distortion or even pulse breakup.  
This effect sets a limit on the bandwidth of a 
directional coupler, and hence, the bit-rate of a 
communication system that uses directional 
couplers. 
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Nonlinear pulse propagation with R=1, R’ = R” =0 
and an initial peak pulse amplitude of  (a) 1 and (b) 2

(a)

(b)



71

Nonlinear pulse propagation with R=1, R’ = -0.5, R”=0 
and an initial peak pulse amplitude of  (a) 1 and (b) 2

(a)

(b)
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Linear pulse propagation with R=100, R” =0,
(a) R’ =0  and (b)  R’ =-10

(a)

(b)
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Nonlinear pulse propagation with R=1, R’ = R” =0 and 
an initial peak pulse amplitude of (a) 1.89 and (b) 1.90

(a)

(b)
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Nonlinear pulse propagation with R=1, R’ = -0.5, R” =0 
and an initial peak pulse amplitude of (a) 1.80 and (b) 1.84

(a)

(b)



Comparison of power transfer and coupling length 

F_max :   analytical maximum power transfer from core 1 to core 2

F′_max :  numerical maximum power transfer from core 1 to core 2

Lc :   analytical coupling length

Lc′ :  numerical coupling length

'
cLρ2/ρ1 F_max F′_max Lc

1 1 0.99 0.15 0.15

0.95 0.92 0.88 0.14 0.14



Analytically, the maximum power transfer F_max from core 1 to 
core 2 is:

Analytical Expressions
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where          is the propagation constants of the two cores respectively )2(1β

The coupling length is the distance at which F_max occurs:
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F′_max ,        are obtained by solving the coupled-mode equations '
cL

'
cL

'
cL

ρ2/ρ1 = 1
For example,

coupling length



The two-core fiber coupler, though formed with two single-mode 
waveguides, is actually a two-mode structure.  

Intermodal dispersion: the difference between the 
group delays of these two modes. 

What’s the intermodal dispersion ?



The two-core fiber coupler, though formed with two single-mode 
waveguides, is actually a two-mode structure.  

Intermodal dispersion: the difference between the 
group delays of these two modes. 

What’s the intermodal dispersion ?

Reference Parameters:

ρ1 = 3.25μm,            Δ = 0.0055,         λ = 1.55 μm,   

t0 =10 fs,               d/ρ1 = 2.5 ,           ρ2/ρ1 = 0.9



Identical core  ρ2/ρ1 = 1

U=|a1(Z,T)|2

V=|a2(Z,T)|2

80



Nonidentical core  ρ2/ρ1 = 0.95
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The coupling phenomenon behaves very well with little pulse distortion  
without the presence of the intermodal dispersion

The presence of intermodal dispersion leads to the breakup of the input 
pulse and causes severe pulse distortion 

Intermodal dispersion should be an important factor of consideration in 
the design of two-nonidentical-core fiber couplers 



Investigation of 2nd Order Coupling Coefficient Dispersion
C    = C  = 0''

12
''
21

A=4.0 A=4.5

The switching threshold amplitude A_th is between 4.3 and 4.4



C    , C    ≠ 0''
12

''
21

A=4.5 A=4.9

The switching threshold amplitude A_th is between 4.8 and 4.9
''C has the effect of raising the switching threshold amplitude A_th
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Coupled-mode equations 

Effects of coupling coefficient dispersion 

Effects of gain bandwidth 

Effects of gain saturation 
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The normalized coupled-mode equations that include the effects 
of gain
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s          gain saturation parameter

Γ linear gain coefficient                  

The terms on the right sides of the equations represent the gain
characteristics of the fiber. 

μ gain bandwidth
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Effects of Coupling Coefficient Dispersion
Influences on switching characteristics 
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In the presence of R’, the contrast between 
the high and low transmission levels becomes 
smaller 

The switching curve with R′ = 0 agree 
closely with reported results, which confirms 
the accuracy of our numerical analysis 
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Influences on pulse shape 

R’ = -0.25, μ = 0R’ = 0, μ = 0

Reveals how the input pulse becomes distorted and eventually breaks up 

In addition to pulse amplification, pulse compression in the core V can 
also be observed 
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Effects of gain bandwidth

Balance of pulse breakup effect

R’ = -0.25, μ = 0.1

A qualitatively new feature is the 
suppression of pulse breakup and distortion 
effects Why?

The physical reason is that the coupling 
coefficient dispersion tends to split the input 
pulse and hence broaden its spectral width. 
Whereas, the finite gain bandwidth limits the 
spectral width of the pulse. The result of these 
two effects is that the pulse preserves its 
spectrum and thus pulse shape. 
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Effects of gain saturation
Influences on pulse shape 

s=0 s=0.1 

A significant difference is that the output power is greatly reduced
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ConclusionsConclusions
Passive nonlinear two-core fiber couplers 

Active nonlinear two-core fiber couplers 

New coupled-mode equations including the dispersion properties of 
coupling coefficient have been derived
The effects of dissimilarity of two cores on the characteristics of the 
two-nonidentical-core fiber coupler have been studied
The effects of intermodal dispersion and 2nd order coupling
coefficient dispersion have been investigated 
A two-nonidentical-core fiber coupler can perform as a twin-core 
fiber coupler  

New coupled-mode equations with the consideration of coupling coefficient 
dispersion, gain bandwidth and gain saturation have been derived
The coupling-coefficient dispersion can cause significant pulse distortion or
even pulse breakup as in a passive nonlinear two-core fiber 
The gain  bandwidth can suppress the adverse effect caused by the coupling 
coefficient dispersion, i.e., pulse breakup effect 
The gain saturation can limit the growth of the pulse power, however, it has 
no adverse effect on the pulse shape  



ConclusionsConclusions

The effects of dissimilarity of two cores on the characteristics of the 
two-nonidentical-core fiber coupler have been studied

The effects of dispersive coupling coefficients have been investigated 

New coupled-mode equations have been derived

This equation describes pulse propagation in a two-nonidentical-core fiber coupler 
with the inclusion of the dispersion properties of the coupling coefficient  

The intermodal dispersion can cause pulse breakup and the 2nd order coupling 
coefficient  has the effect of increasing the switching threshold amplitude



Q&A
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Some of our recent 

projects in NTRC
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