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Principles of the GLIC wavemeter

• Can determine wavelengths with 2 – 5pm 
resolution

• Sub – microsecond response time
• Adaptable to a number of applications

– Communications
– Biophotonics
– Sensing
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GLIC in Communications Networks
• Compatible with present and future network 

configurations
– Critical component for network monitoring in 

WDM-PON (WDMA) rollout



Optoelectronic Research Centre,
Univ. College Dublin, Ireland

Description of the device

• Fabricated in SiO2 on a Silicon substrate
– Easily incorporated into PLC based systems

• Consists of a 4 channel PLC
– Has mutually offset dual Fabry – Perot 

etalons on 2 channels
– 3rd channel contains a linear dielectric filter
– 4th channel is for throughput and reference
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Schematic Layout of GLIC 
wavemeter
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Theory governing the device

• Initial tunable Micro Electro Mechanical 
System (MEMS) filter
– serves as a coarse channel pre – selector 

• Linear filter
– generates a crude Look Up Table (LUT)

• Use in – quadrature response of the FP arms
– normalised 
– wavelength is determined using Free Spectral Range 

(FSR) data 
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Necessity for Quadrature

• Host of  devices may be used as to 
determine wavelength
– Linear Dielectric Filters (LDF)
– Fabry – Perot Interferometers (FPI)

• Standalone versions do not realise high 
resolution
– Staircase effect in LDF
– Resolving power of FPI diminishes as 

spectrum of interest increases
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Realising Quadrature

• Reflections from the mirror faces create a 
multiple beam interference pattern

• Establish a suitable offset so as to advance 
one FSR by ¼ wavelength
– Arbitrarily selected 100 GHz (25 GHz)

• Ensure no swap over of FSR’s occur in the 
region of interest
– FSR’s remain within ±4 GHz of the 25 GHz required 

for quadrature
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Plot of Quadrature over the entire 
C Band
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Determining the cavity shift
• Condition for maximum to occur in the 

interference pattern:
• The FSR in terms of frequency is:
• Selecting the desired order of Interference and 

the spectrum of interest permits the etalon 
lengths to be evaluated

• Dual cavity systems augment the resolving power
– Maxima exist when those of the intermediate longer 

etalon coincide with those of the shorter air trenches
– Range may be increased without an overlapping of 

orders
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Important parameters for the design

• Require a Low finesse
– R air – glass interface ≈ 4%
– A sinusoidal type Airy function response
– Elongation permits use of approximately linear section 

of FSR to resolve the wavelength

• High Visibility preferred
– More resolving power in the vertical plane
– Sharpens the fringes into delta – like functions

• Requires a finesse – visibility tradeoff
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Addressing losses
• Losses at facets do not affect the visibility and 

finesse relationships
– Will affect intensity of the throughput pattern

• Optimise trench thickness
– Cavities longer than 20μm suffer severe losses (>2dB 

per trench)
• Prevent thermal losses

– ∂n/∂T ≈ 0.00001 /°C
– Heat entire device to a homogeneous temperature of 

60 °C to avoid thermal transients affecting quadrature
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Fine Tuning Mechanism

• Imperfect cavity lengths will prevent 
quadrature from being realised
– Losses
– Fabrication limits 

• Take advantage of Thermo – Optic effect
– May calibrate the cavities using TO effect
– NiCr thin film heater sputtered on top of 

waveguides to make slight adjustments as 
required 
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Simulations
• Multiple back reflections at the Fabry – Perot 

facets
– Beam Propagation Method (BPM) is insufficient
– Bidirectional BPMs are unstable or time consuming
– FDTD is inefficient due to multiple facets

• Developed a Finite Element – BPM twinned with 
a Bidirectional Eigenmode Propagation (BEP) 
method
– Permits modelling of back reflections
– Avoids pitfalls of BPM or BEP standalones 
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BPM simulation depicting 
2 air trenches
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BEP simulation depicting the same 
2 air trenches
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Experimental Results

• Portrays excellent correlation with quadrature theory
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• Arbitrarily pre – selecting the appropriate 
method for each sub – region enhances the 
accuracy of the simulation
– Straight, tapered and bent waveguides may be 

analysed via the FE – BPM (providing no 
significant reflections occur)

– Regions containing substantial reflections (the 
GLIC air trenches) can be handled with the BEP 

Merits of combining the
FE – BPM with the BEP
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Simulation after combining the
FE – BPM with the BEP
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• Twinning the BEP and FE – BPM is an 
efficient method for simulating PLCs
– Computational effort is minimalised
– Speed of solution is acceptable
– Appropriate Boundary Conditions may be 

applied
• The pitfalls of both methods may be 

largely avoided allowing this approach to 
be implemented on modest PCs

FE – BPM / BEP analysis



Optoelectronic Research Centre,
Univ. College Dublin, Ireland

Proposals for Future Work
• Increase overall speed of the wavemeter

– Implement the Optical Signal Processing (OSP) on an 
Application – Specific Integrated Circuit (ASIC) 
platform

– Ultrafast photodetectors with response times <15ps 
• Increase resolving power

– materials such as Silver (R = 80%) or Aluminium (R = 
75%) will increase visibility

• Test & improve Thermo – Optic tuning system
• Extend sensing capabilities

– Application specific design criteria
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Conclusions

• Fast accurate wavelength meter has 
been designed
– Sub microsecond response time
– 5pm precision

• An efficient numerical method has been 
implemented, accounting for the modal 
propagational profile and losses

• Theory of quadrature has been realised
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