Numerical analysis of a swift, high resolution wavelength monitor designed as a Generic Lightwave Integrated Chip (GLIC)

John Ging and Ronan O'Dowd

Optoelectronics Research Centre University College Dublin, Ireland

Principles of the GLIC wavemeter

- Can determine wavelengths with 2 5pm resolution
- Sub microsecond response time
- Adaptable to a number of applications
 - Communications
 - Biophotonics
 - Sensing

GLIC in Communications Networks

- Compatible with present and future network configurations
 - Critical component for network monitoring in WDM-PON (WDMA) rollout

Description of the device

- Fabricated in SiO₂ on a Silicon substrate

 Easily incorporated into PLC based systems
- Consists of a 4 channel PLC
 - Has mutually offset dual Fabry Perot etalons on 2 channels
 - 3rd channel contains a linear dielectric filter
 - 4th channel is for throughput and reference

Schematic Layout of GLIC wavemeter

Theory governing the device

- Initial tunable Micro Electro Mechanical System (MEMS) filter
 - serves as a coarse channel pre selector
- Linear filter
 - generates a crude Look Up Table (LUT)
- Use in quadrature response of the FP arms
 - normalised
 - wavelength is determined using Free Spectral Range (FSR) data

Necessity for Quadrature

- Host of devices may be used as to determine wavelength
 - Linear Dielectric Filters (LDF)
 - Fabry Perot Interferometers (FPI)
- Standalone versions do not realise high resolution
 - Staircase effect in LDF
 - Resolving power of FPI diminishes as spectrum of interest increases

Realising Quadrature

- Reflections from the mirror faces create a multiple beam interference pattern
- Establish a suitable offset so as to advance one FSR by ¼ wavelength

- Arbitrarily selected 100 GHz (25 GHz)

- Ensure no swap over of FSR's occur in the region of interest
 - FSR's remain within ±4 GHz of the 25 GHz required for quadrature

Plot of Quadrature over the entire C Band

Frequency (THz)

Determining the cavity shift

- Condition for maximum to occur in the interference pattern: $m\lambda = 2nd \cos(\theta)$
- The FSR in terms of frequency is: $(v)_{FSR} = \frac{c}{2nd}$
- Selecting the desired order of Interference and the spectrum of interest permits the etalon lengths to be evaluated
- Dual cavity systems augment the resolving power
 - Maxima exist when those of the intermediate longer etalon coincide with those of the shorter air trenches
 - Range may be increased without an overlapping of orders

Important parameters for the design

- Require a Low finesse
 - R air glass interface $\approx 4\%$

$$F = \frac{\pi\sqrt{R}}{1-R}$$

- A sinusoidal type Airy function response
- Elongation permits use of approximately linear section of FSR to resolve the wavelength
- High Visibility preferred

- $V=\frac{2R}{1+R^2}$
- More resolving power in the vertical plane
- Sharpens the fringes into delta like functions
 - Requires a finesse visibility tradeoff

Addressing losses

- Losses at facets do not affect the visibility and finesse relationships
 - Will affect intensity of the throughput pattern
- Optimise trench thickness
 - Cavities longer than 20µm suffer severe losses (>2dB per trench)
- Prevent thermal losses
 - ∂n/∂T ≈ 0.00001 /°C

$$\frac{\partial(nd)}{\partial T} = \left(n\alpha + \frac{\partial(n)}{\partial T}\right)d$$

 Heat entire device to a homogeneous temperature of 60 °C to avoid thermal transients affecting quadrature

Fine Tuning Mechanism

- Imperfect cavity lengths will prevent quadrature from being realised
 - Losses
 - Fabrication limits
- Take advantage of Thermo Optic effect
 - May calibrate the cavities using TO effect
 - NiCr thin film heater sputtered on top of waveguides to make slight adjustments as required

Simulations

- Multiple back reflections at the Fabry Perot facets
 - Beam Propagation Method (BPM) is insufficient
 - Bidirectional BPMs are unstable or time consuming
 - FDTD is inefficient due to multiple facets
- Developed a Finite Element BPM twinned with a Bidirectional Eigenmode Propagation (BEP) method
 - Permits modelling of back reflections
 - Avoids pitfalls of BPM or BEP standalones

BPM simulation depicting 2 air trenches

BEP simulation depicting the same 2 air trenches

Experimental Results

Portrays excellent correlation with quadrature theory

Merits of combining the FE – BPM with the BEP

- Arbitrarily pre selecting the appropriate method for each sub – region enhances the accuracy of the simulation
 - Straight, tapered and bent waveguides may be analysed via the FE – BPM (providing no significant reflections occur)
 - Regions containing substantial reflections (the GLIC air trenches) can be handled with the BEP

Simulation after combining the FE – BPM with the BEP

FE – BPM / BEP analysis

- Twinning the BEP and FE BPM is an efficient method for simulating PLCs
 - Computational effort is minimalised
 - Speed of solution is acceptable
 - Appropriate Boundary Conditions may be applied
- The pitfalls of both methods may be largely avoided allowing this approach to be implemented on modest PCs

Proposals for Future Work

- Increase overall speed of the wavemeter
 - Implement the Optical Signal Processing (OSP) on an Application – Specific Integrated Circuit (ASIC) platform
 - Ultrafast photodetectors with response times <15ps
- Increase resolving power
 - materials such as Silver (R = 80%) or Aluminium (R = 75%) will increase visibility
- Test & improve Thermo Optic tuning system
- Extend sensing capabilities
 - Application specific design criteria

Conclusions

- Fast accurate wavelength meter has been designed
 - Sub microsecond response time
 - 5pm precision
- An efficient numerical method has been implemented, accounting for the modal propagational profile and losses
- Theory of quadrature has been realised

Acknowledgements and References

• We wish to thank Enterprise Ireland for funding this project and COM/Danchip at DTU, Denmark for the use of their facilities

