

The Influence of Surface Effects on the Simulation of 1.3µm InGaAsN Edge-Emitting Lasers

J.J. Lim, S. Sujecki, and E.C. Larkins

Photonic and Radio Frequency Engineering Group (PRFEG) School of Electrical and Electronic Engineering, University of Nottingham

Email: jun.lim@nottingham.ac.uk

J.J. Lim, S. Sujecki, and E.C. Larkins

We thank the following people for data and stimulating discussions.

- > Y.Q. Wei, J. Gustavsson and A. Larsson (Chalmers Univ. of Technology)
- > M. Dumitrescu and M. Pessa (Tampere Univ. of Technology)
- > P. Sipilä, P. Melanen and P. Uusimaa (Modulight Ltd.)

We gratefully acknowledge the support of the European Commission through the FP6 IST project **FAST ACCESS** (IST-004772) and **WWW.BRIGHT.EU** (IST-511722).

Presentation Outline

- Boundary condition models
- Surface Fermi-level pinning
- Simulation tool
- Dilute nitride lasers
- Simulation results
- Conclusions and outlook

Boundary Condition Models

Semiconductor-insulator boundary condition models usually employ a combination of the following assumptions:

Fixed surface charge

$$\varepsilon_0 \varepsilon_s \frac{\partial \phi}{\partial \mathbf{n}} = Q_s$$

Fixed surface recombination velocity

 $\mathbf{n} \cdot \mathbf{J}_{\mathbf{n}} = -qv_{sr}(np - n_0 p_0)$ $\mathbf{n} \cdot \mathbf{J}_{\mathbf{p}} = qv_{sr}(np - n_0 p_0)$

These BCs suffer from the following problems:

- the equilibrium Fermi-level at the interface depends on doping type and concentration (i.e. no pinning)
- the surface charge doesn't change with recombination dynamics (e.g. no band-flattening with illumination)

Fermi-level Pinning

- Fermi-level pins at the surface of many semiconductors
- Large number of defect states at surface
- Defect states act as traps and recombination centres
 - Trapped charge causes surface band bending
 - Surface pinning affects surface recombination

• In GaAs, Fermi-level pinning is attributed to two defect levels in the bandgap of the semiconductor

Fermi-level Pinning Model

$$\begin{aligned} Q_{s} &= q N_{TD} (1 - f_{TD}) \\ &- q N_{TA} f_{TA} \end{aligned} \qquad f_{T} = \frac{\tau_{p} n + \tau_{n} p_{1}}{\tau_{n} (p + p_{1}) + \tau_{p} (n + n_{1})} \end{aligned} \qquad n_{1} = N_{C} \exp\left(\frac{E_{T} - E_{C}}{kT}\right) \qquad \tau_{n} = \frac{1}{N_{T} \sigma_{n} v_{th}} \\ R_{surf} &= \frac{np - n_{1} p_{1}}{\tau_{p} (p + p_{1}) + \tau_{p} (n + n_{1})} \end{aligned} \qquad p_{1} = N_{V} \exp\left(\frac{E_{V} - E_{T}}{kT}\right) \qquad \tau_{p} = \frac{1}{N_{T} \sigma_{p} v_{th}} \end{aligned}$$

References: W. E. Spicer et al., J. Vac. Sci. Technol. B, Vol. 6, pp. 1245-1251, 1988 R. B. Darling, Phys. Rev. B Vol. 43, No. 5, pp. 4071-83, 1991

J.J. Lim, S. Sujecki, and E.C. Larkins

Surface Fermi-level pinning (Equilibrium)

→ Surface Fermi-level nearly independent of dopant type / concentration.

J.J. Lim, S. Sujecki, and E.C. Larkins

Surface Fermi-level pinning (Non-Equilibrium)

- · Surface band-bending of n- and p- GaAs as a function of optical illumination
- N_A / N_D = 1x10¹⁶ cm⁻³, N_S = Φ_s/v_g = 0 1x10¹⁶ cm⁻³

→ Illumination changes the depletion width and flattens the band-bending.

J.J. Lim, S. Sujecki, and E.C. Larkins

Simulation Software

Dilute Nitride Lasers

- Bandgap energy reduction Longer wavelength
- \cdot Large conduction band offset High $\rm T_{\rm 0}$
- Low-cost alternative to InP for access networks
- 17 GHz maximum modulation bandwidth
- Characteristic temperature = 181-266 K (20-70°C)

Reference: *Y.Q. Wei et al.*, *Optics Express, Vol. 14, pp. 2753-2759, 2006*

Device Structure

- 7nm $In_{0.39}Ga_{0.61}AsN_{0.012}/GaAs DQW$
- \cdot 4x400 μ m² Ridge Waveguide

Reference: *Y.Q. Wei et al.*, *Appl. Phys. Lett.*, *Vol. 88*, 051103, 2006.

J.J. Lim, S. Sujecki, and E.C. Larkins

Power-Current Characteristic

Surface band-bending reduces current spreading and threshold current

Vertical Current Density Distribution

• Etch depth = $1.2\mu m$

Without surface BC

With surface BC

- → Reduced current density at vertical edge of ridge
- → Less current spreading means fewer carriers need to be supplied

Hole Density Distribution

• Etch depth = $1.2\mu m$

→ Surface Fermi-level pinning depletes the p-region beneath the etch

Surface Charge Density Distribution (Vertical Edge)

• Etch depth = $1.2\mu m$

→ Surface charge (& depletion) depend on bias & position

J.J. Lim, S. Sujecki, and E.C. Larkins

Surface Charge Density Distribution (Lateral Edge)

• Etch depth = $1.2\mu m$

→ Surface depletion decreases with bias – lateral conductivity increases

Surface Recombination Current

Surface recombination integrated over surface

Surface recombination current is small, but increases with etch depth and bias

J.J. Lim, S. Sujecki, and E.C. Larkins

Conclusions

- Accurate surface boundary condition implemented into a comprehensive laser diode simulator
- The assumption of a constant surface charge is inappropriate distribution of charge is a nontrivial function of position and bias
- In ridge waveguide lasers, surfa electrostatics in vicinity of the surface
- Surface recombination current is
- Surface recombination dynamics laser structures
- Proper surface BC's do not need

