

School of Electrical and Electronic Engineering

Studying of intra-band and inter-band transitions in InSbN/InSb quantum well using 10-band k·p model

W. Liu, D. H. Zhang, Z. M. Huang et al.

EEE School, Nanyang Technological University

Recent progress – InSbN material

- The growth and characterization of InSb_{1-x}N_x was first reported in 2000 [1]
- The introduction of dilute nitrogen into the binary InSb is to reduce the bandgap based on band anti-crossing (BAC) effect [1, 2]. Negative bad gap observed in InSb_{1-x}N_x alloys have also been reported [3]
- The room temperature LEDs comprising an InSb_{0.945}N_{0.055}/InSb superlattice structure peaked at 10.5 µ m has been realized[4]
- The Auger recombination rate in InSb_{1-x}N_x is only about one third of that of the equivalent band gap mercury cadmium telluride (MCT) [5]
 - [1] A. D. Johnson, R. H. Bennett, J. Newey, et al., "InNxSb1-x light emitting diodes grown by MBE," Mater. Res. Soc. Symp. Proc. 2000, 607:23-8
 - [2] B. N. Murdin, A. R. Adams, P. Murzyn, et al., "Band anticrossingin dilute InN_xSb_{1-x}," *Appl. Phys. Lett.*, vol. 81, no. 2, pp. 256-258, 2005
 - [3] T. D. Veal, I. Mahboob, and C. F. McConville, "Negative Band Gaps in Dilute InN_xSb_{1-x} Alloys," *Phys. Rev. Lett.*, vol. 92, no. 13, 136801, 2004
 - [4] T. Ashley, T. M. Burke, G. J. Pryce, et al., "InSb1–xNx growth and devices," Solid-State Electronics, Vol. 47, pp. 387-394, 2003
 - [5] B. N. Murdin, M. Kamal-saadi, A. Lindsay, et al., "Auger recombination in long-wavelength infrared InNxSb1–x alloys", *Appl. Phys. Lett.*, vol. 78, no. 11, pp. 1568-1570, 2001.

$InSb_{1-x}N_x/InSb$ QW for IR detection

- Because of the band anti-crossing (BAC) effect that generates E+ and E- bands in InSbN, the InSbN/InSb system appear to be an equivalent QW structure since the E- state is markedly below the InSb conduction band edge. In this article, we aim to present an effective theoretical analysis on the InSbN/InSb based structures
- To exploit the possibility of InSb_{1-x}N_x/InSb QW for long-wavelength infared photodetection based on inter-band and intra-band transitions

School of Electrical and Electronic Engineering

Theoretical method

10-band k·p Hamiltonian

$$\mathbf{H} = \begin{bmatrix} \mathbf{H}_{p\bar{s}} & \mathbf{H}_{p\bar{s}-N} \\ (8 \times 8) & (8 \times 2) \\ \mathbf{H}_{p\bar{s}-N} & \mathbf{H}_{N} \\ (2 \times 8) & (2 \times 2) \end{bmatrix}$$

٦

Гтт

 $H_{p\bar{s}}$ — the conventional 10-band k·p Hamiltonian H_N — the N band Hamiltonian $H_{p\bar{s}-N}$ — consists the coupling terms connecting conduction band and valance band with N states

$$\mathbf{H}_{N} = \begin{bmatrix} E_{N0} + \alpha_{N}k^{2} & 0\\ 0 & E_{N0} + \alpha_{N}k^{2} \end{bmatrix} \quad \mathbf{H}_{p\bar{s}-N} = \begin{bmatrix} V_{NC} & 0 & -\sqrt{3}T_{N+} & \sqrt{2}Q_{N} & -T_{N-} & 0 & -Q_{N} & -\sqrt{2}T_{N-}\\ 0 & V_{NC} & 0 & T_{N+} & \sqrt{2}Q_{N} & -\sqrt{3}T_{N-} & \sqrt{2}T_{N+} & -Q_{N} \end{bmatrix}$$

The total wave function is $\Psi(r) = \sum_{j=1}^{10} F_j(r) u_j(r) = \sum_{j=1}^{10} \exp(ik_t \rho) \varphi_j(z) u_j(r)$

The envelope functions are then expanded to a discrete Fourier series:

$$F_{j}(r) = \exp[i(k_{x}x + k_{y}y)]\sum_{m} a_{j,m} \frac{1}{\sqrt{L}} \exp\left[i\left(k_{z} + m \cdot \frac{2\pi}{L}\right) \cdot z\right]$$

Calculated results

School of Electrical and Electronic Engineering

Subband energy dispersions

(a) $InSb_{0.99}N_{0.01}/InSb$ MQW and (b) $InSb_{0.985}N_{0.015}/InSb$ MQW

InSbN well width is 14 nm and InSb barrier is 25 nm

The lowest two subbands in conduction (E1, E2) and valence band (HH1, LH1) are displayed

Calculated results

Inter-band transitions

Calculated (a) squared optical transition matrix elements vs plane wave vector k_t and (b) absorption coefficients vs. optical wavelength of E1-HH1 transition for TE and TM polarizations

InSb_{0.99}N_{0.01}/InSb MQW

Calculated results

Intra-band (inter-conduction subband) transitions

Calculated (a) squared optical transition matrix elements vs. plane wave vector k_t and (b) absorption coefficients vs. optical wavelength of intraconduction band E1-E2 and E1-E3 transitions for TM polarization

InSb_{0.99}N_{0.01}/InSb MQW

Conclusion

The squared optical transition matrix elements of intra-band transitions show very large amplitude. The peak value is about 9, which is over one third of the interband one (about 24). It's 5-10 times greater than that of usual GaAs/AlGaAs systems (about 0.5-2).

This is due to the very narrow bandgap of InSb(N) material that strengths the valence-conduction state coupling effect and hence improves inter-conduction subband transition rates.

The interband transition shows absorption peak at 9.25 µm. The intraband transition shows absorption peak at 25.8 µm. It's indicated that the InSbN/InSb system is potentially advantageous for photodetection at various infrared wavelength band.

School of Electrical and Electronic Engineering

Thank you!