Simulation of two-state lasing dynamics in quantum-dot lasers

L.-C. Su and M.-H. Mao

Department of Electrical Engineering Graduate Institute of Electronics Engineering Graduate Institute of Electro-Optical Engineering National Taiwan University

Outline

- Introduction
- Theoretical model
 Rate-equation model
- Simulation results
- Conclusions

Introduction - previous works

- Steady states
 - With increasing excitation, ground states always achieve lasing first.
 - Simultaneous lasing from GS and ES can occur under some conditions.
- Dynamic
 - Some theoretical predictions were reported.

Ref. A. Markus et. al, Appl. Phys. Lett.. 82, 1818 (2003) Ref. M. Sugawara et. al, J. Appl. Phys. 97, 0435243 (2005)

Simulation model

- Include
 - Four energy levels
 - Carrier thermal escape effect
 - Homogeneous Broadening
 - Inhomogeneous Broadening

Ref. M. Sugawara et. al, Phys. Rev. B 61, 7595 (2000)

Simulation model (cont.)

Ref. M. Sugawara et. al, Phys. Rev. B 61, 7595 (2000)

Simulation model (cont.)

• Photon lifetime

$$\tau_p^{-1} = \frac{c}{n_r} [\alpha_i + (\frac{1}{2L_{ca}}) \ln(\frac{1}{R_1 R_2})]$$

• Carrier lifetime

$$\tau_{rn}^{-1} = A + BN + CN^2$$

• Optical gain modal

 $g_{mn} = a_0 (2P_n - 1) \underbrace{G_n \underbrace{B_{cv}(E_m - E_n)}_{\text{Homogeneous broadening function (Lorentz distribution)}}_{\text{Inhomogeneous broadening function (Gaussian distribution)}}$

Ref. M. Sugawara et. al, Phys. Rev. B 61, 7595 (2000)

Simulation model (cont.)

• Consider (Pauli exclusion principle)

- D_j : degeneracy for j state V_A : total volume of active region
- G_n : inhomogeneous broadening function
- *j* : g or e (ground state or excited state)

Ref. M. Sugawara et. al, Meas. Sci. Technol. 13, 1683 (2002)

Simulation condition

- Ground-state gain will saturate.
- When optical loss is larger than ground-state peak modal gain (11.5 cm⁻¹), this QD laser diode will lase from ES.
- In our simulation, the optical loss is assumed 10.9 cm⁻¹.

Theoretical results (I)

- Static properties of two-state lasing in quantum dot lasers
- Threshold current density J_{th} : 810 A/cm²
- Under 1.5 J_{th} , 2.0 J_{th} and 2.5 J_{th} , no lasing from ES

Theoretical results (II)

- Large signal modulation
- Electrical was turn on at t = 0.

Theoretical results (III)

- Excited-state lasing occurs prior to ground-state lasing.
- Excited-state photons decrease after ground states start lasing.
- Only ground-state lase in steady states.

Theoretical results (IV)

• $\tau_{WL \rightarrow g,n}$ and $\tau_{e,n \rightarrow g,n}$ become larger.

$$\tau_{WL->g,n} \& \tau_{e,n->g,n} \propto (1-P_{n,g})$$

- Ground-state carriers increase slowly.
- When ground-state finally achieve lasing, excited-state carriers can relax into ground states.

Conclusions

- The details of dynamic phenomena of two-state lasing in quantum-dot lasers is theoretically demonstrated in this study.
- We show that excited states achieve lasing prior to ground states in transient behavior under certain conditions, especially when the optical loss level is close to ground-state saturation gain.
- This phenomenon is dramatically different from the static twostate lasing behavior in quantum-dot lasers.

Thank you for your attention.

Theoretical results

- Excited-state lasing occurs prior to ground-state lasing.
- Excited-state photons decrease after ground states start lasing.
- Both ground-state and excited-state lase in steady states.

National Taiwan University

Simulation parameters

$\Gamma_{homo} = 10 \text{ meV}$	$n_r = 3.3$
$\Gamma_{inhomo} = 25 \text{ meV}$	$N_D = 2.5 * 10^{23} \text{ m}^{-3}$
$\lambda_{GS} = 1305 \text{ nm}$	$\Gamma = 0.05$
$\lambda_{ES} = 1222 \text{ nm}$	$\beta = 0.896 * 10^{-4}$
$L_{ca} = 2000 \ \mu m$	$V_A = 7.5 * 10^{-16} \text{ m}^3$
$R_1 = R_2 = 0.32$	$\tau_{0,WL->g} = 10 \text{ ps}$
$a_i = 5.2 \text{ cm}^{-1}$	$\tau_{0,WL->e} = 5 \text{ ps}$
$\tau_{0,g} = 10 \text{ ps}$	$\tau_{0,e->g} = 1 \text{ ps}$
$\tau_{0,e} = 7 \text{ ps}$	$\tau_s = 15 \text{ ps}$
$A = 7 * 10^8 \text{ s}^{-1}$	$C = 1.56 * 10^{-14} \text{ s}^{-1}$
$B = 0.067 \text{ s}^{-1}$	