# Optical modeling and simulation of thin-film Cu(In,Ga)Se<sub>2</sub> solar cells

<u>J. Krc<sup>1</sup></u>, A. Campa<sup>1</sup>, G. Cernivec<sup>1</sup>, J. Malmström<sup>2</sup>, M. Edoff<sup>2</sup>, F. Smole<sup>1</sup> and M. Topic<sup>1</sup>

<sup>1</sup>University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25 Si-1000 Ljubljana, Slovenia

> <sup>2</sup>Uppsala University, Ångström Solar Center, P.O. Box 534, SE-75120 Uppsala, Sweden

# Outline

- Introduction
- Optical modeling of thin-film solar cells
- Optical simulator SunShine
- Results

Optical simulation of thin Cu(In,Ga)Se<sub>2</sub> solar cells

### Conclusions

#### Solar energy



#### Solar cell (PV modules)



#### **Electrical energy**

> 30 % growth in module production per year

conventional wafer-based solar cells



#### thin-film (TF) solar cells



- lower material consumption
- low temperature processes
- possibility of being flexible

#### $\underline{C}u(\underline{I}n,\underline{G}a)\underline{S}e_2$ (CIGS) thin-film solar cell:



TF solar cell as an optical system:



TF solar cell as an optical system:



TF solar cell as an optical system:



#### **Optical features:**

- multilayer structure
- layers in nm range
- textured interfaces

light scattering!

# **Optical modeling of TF solar cells**



# **Optical modeling of light scattering**



nano-textured surface of CIGS layer

# **Optical modeling of light scattering**

Light scattering at nano-textured interfaces:

- Specular (non-scattered) light
- Scattered (diffused) light



# **Optical modeling of light scattering**

**Descriptive scattering parameters:** 

1. Haze (scattering level)  $H_{R} = \frac{I_{R \text{ dif tot}}}{I_{R \text{ dif tot}} + I_{R \text{ spec}}}$   $H_{T} = \frac{I_{T \text{ dif tot}}}{I_{T \text{ dif tot}} + I_{T \text{ spec}}}$ 



2. Angular distribution functions (directions)







- 1-D semi-coherent optical model [J. Krc et al., Progress in Photovoltaics 11 (2003) 15.]
- specular light electromagnetic waves (coherent)
- scattered light light rays (incoherent)



• 1-D semi-coherent optical model [J. Krc et al., Progress in Photovoltaics 11 (2003) 15.]

Main input parameters (structure description):

Complex refractive indexes and thicknesses of layers

 $N(\lambda) = n(\lambda) - jk(\lambda)$ 



• 1-D semi-coherent optical model [J. Krc et al., Progress in Photovoltaics 11 (2003) 15.]

#### Main input parameters (structure description):

- Complex refractive indexes and thicknesses of layers
- Haze and ADF of textured interfaces and root-mean-square rougness,  $\sigma_{\rm rms}$ , of interfaces

Calibrated equations of scalar scattering theory (for details refer to our NUSOD paper)

 $\sigma_{\rm rms}$ ,  $n, \lambda \rightarrow H_{\rm R}$ ,  $H_{\rm T}$  for internal interfaces

• 1-D semi-coherent optical model [J. Krc et al., Progress in Photovoltaics 11 (2003) 15.]

Main input parameters (structure description):

- Complex refractive indexes and thicknesses of layers
- *H* and *ADF* of textured substrates and measured root-mean square rougness of interfaces

#### Main ourput results:

- Optical reflectance from the structure
- Absorptances in individual layers
- Charge-carrier generation-rate profile

# **Simulations**

Simulated structure:



- Thinning down CIGS absorber below 1 um
   (lower material consumption, shorther deposition times)
- To analyse and optimise optical and electrical properties Numerical modeling&simulation an important tool!

# **Simulations**

Included in simulations:

• Experimentally obtained complex refractive indexes of layers





# **Simulations**

#### Included in simulations:

- Experimentally obtained complex refractive indexes of layers [ O. Lundberg, PhD. Thesis, Uppsala University, 2003]
- Measured H and ADF [J. Krc et al., Proc. of E-PVSEC, Barcelona, 2005, p. 1831.]

Example of  $ADF_{T}$  measurement:









$$A_{\text{CIGS}} \rightarrow QE$$

*if ideal extraction of charge carriers from CIGS* 



determination of optical losses in the structure

Charge-carrier generation-rate profile



for further electrical analysis of the structure

# Conclusions

- good agreement in sim. and meas. total reflectance of thin CIGS solar cell
- calibration of the simulator with realistic optical parameters (refractive indexes, scattering and others) is important
- starting point for optical optimisation and electrical analysis of the structure

# **Further work**

combined optical + electrical analysis of the structure

#### SunShine&Aspin simulators

External characteristics and parameters of the solar cell:



see extended NUSOD paper submitted to OQE

# Simulation

Included in simulations:

Reduced reflectance of CIGS/Mo interface by 30 %

(formation of MoSe<sub>2</sub> interfacial layer) [J. Krc et al., Proc. of E-PVSEC, Barcelona, 2005, p. 1831.]



# Simulation

#### Haze of internal interfaces

Modified equations of scalar scattering theory:

$$H_{R} = 1 - e^{-\left(\frac{4\pi\sigma_{rms} \cdot c_{R}(\sigma_{rms}, \lambda) n_{1}\cos\varphi_{inc}}{\lambda}\right)^{2}} \qquad \begin{array}{c} calibration \\ functions \\ initial values: \\ c_{R} = 1 \\ c_{T} = 0.5 \end{array}$$

P. Beckmann, A. Spizzichino, Pergamon Press (1963)
C.K. Carniglia, Optical Engineering 18/2 (1979)
M. Zeman et. al. JAP 88 (2000)
J. Krc et al. J. Appl. Phys. 92/2 (2002) 749-755.
J. Krc et al. Thin Solid Films 426/1-2 (2003) 296-304

basic theory

calibration introduced

C. C.

# Simulation

#### Application of the calibrated theory to internal interfaces

