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Sensitivity of image sensor processes to passivation planarization

A good passivation planarization leads to
preventing the clear layer coating issues

shortening the optical path between color surface and active surface

Achieving a good planarization needs:
optimizing the height and width of trenches to obtain sufficient:
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planarization margin

Microlens ——————

spacer

e EEEE—
Colar Filter —»
'!’-!- P ]
4+

Planarization ——

Passivation — 8 ——

Photo Digge ——=




The Level Set Method

This method provides means for describing the moving boundaries




The Level Set Method

This method provides means for describing the moving boundaries
Viewing the moving boundary at the time t as the zero level set of u(¢, x)




The Level Set Method

This method provides means for describing the moving boundaries
Viewing the moving boundary at the time t as the zero level set of u(¢, x)

The initial boundary is the set of {x|u(0,x) =0}




The Level Set Method

This method provides means for describing the moving boundaries
Viewing the moving boundary at the time t as the zero level set of u(¢, x)
The initial boundary is the set of {x|u(0,x) =0}

Moving the boundary points with a speed F'(t,x) normal to the boundary




The Level Set Method

This method provides means for describing the moving boundaries
Viewing the moving boundary at the time t as the zero level set of u(¢, x)
The initial boundary is the set of {x|u(0,x) =0}

Moving the boundary points with a speed F'(t,x) normal to the boundary

The boundary at a later time ¢4 is the zero level set function
{x|u(ty,x) = 0}




The Level Set Method
e

This method provides means for describing the moving boundaries
Viewing the moving boundary at the time t as the zero level set of u(¢, x)
The initial boundary is the set of {x|u(0,x) =0}

Moving the boundary points with a speed F'(t,x) normal to the boundary

The boundary at a later time ¢ is the zero level set function {x|u(t1,x) =0}
This leads to the level set equation




The Level Set Method
e

This method provides means for describing the moving boundaries
Viewing the moving boundary at the time t as the zero level set of u(¢, x)
The initial boundary is the set of {x|u(0,x) =0}

Moving the boundary points with a speed F'(t,x) normal to the boundary

The boundary at a later time ¢ is the zero level set function {x|u(t1,x) =0}
This leads to the level set equation

ur + F(t,x)||[Vxul|| =0
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Simulation Flow

The simulator is called ELSA (Enhanced Level Set Applications)
Construction of the initial level set function as the signed distance function
Performing the time step in physical model
Finding the speed function on the trench
Using a fast marching method for extension of the speed function
Performing the level set step in the narrow band
lteration till reaching the end of simulation time




Simulation Flow of ELSA

ELSA (Enhanced Level Set Applications)

Construct initial level set function
as the signed distance function

Y
Perform radiosity time step  j¢——
Y
Find speed function on surface
Y

Construct signed distance function
and simultaneously
extend the speed function
to the whole narrow band

Y
Perform level set in narrow band

Y

Extract final surface




Example: Boundary Evolution
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Simulation of a deposition process leading to void formation
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Optimization Tool SIESTA

Simulation Environment for Semiconductor Technology Analysis

Scorefunction

Simulation Flow
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Deposition of silicon nitride:
D = 0.5, 1.0, 2.0, 3.0, and 4.0um
H = 2.0, 3.0, and 4.0um
T =0.3, 0.6, and 0.9um

Deposition of silicon dioxide:
D =0.3, 0.5, 0.8, 1.0, 1.4, 2.0, and 3.0um
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T =0.3,0.7, and 1ym
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Simulation Results: Silicon Nitride Passivation (1)
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Simulation Results: Silicon Nitride Passivation (2)

T(pm) | H(pm) | D(pm) | a(pm) | s(pm) | b(um)
0.9 4 1 043 | 029 | 0.17
0.6 4 1 NA | 029 | 0.17
0.3 4 1 NA | 0.14 | 0.09
0.9 3 1 049 | 031 | 0.17
0.6 3 1 NA | 031 | 0.17
0.3 3 1 NA | 0.14 | 0.09
0.9 2 1 04 | 034 | 026
0.6 2 1 NA | 034 | 026
0.3 2 1 NA | 0.14 | 0.09
0.9 4 0.5 0.9 |0.1665| 0.06
0.6 4 05 | 057 |0.1665 | 0.06
0.3 4 05 | 0.17 |0.1665 | 0.06
0.9 3 0.5 0.9 |0.1665 | 0.06
0.6 3 05 | 057 |0.1665| 0.06
0.3 3 0.5 NA | 0.1665 | 0.06
0.9 2 0.5 09 | 018 | 0.11
0.6 2 05 | 057 | 018 | 0.11
0.3 2 0.5 NA | 0.18 | 0.11
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Planar topside is obtained:
narrowing down the trench width to 1um and with 0.9um nitride thickness

narrowing down the trench width to 0.5um and with 0.6um nitride thickness

No planar topside when thinning down nitride to 0.3um for
trench height of 2um

trench height of 3um

Avoiding voids by means of making trenches to 2um and more
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Simulation Results: Silicon Dioxide Passivation (1)
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Simulation Results: Silicon Dioxide Passivation (2)
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Conclusion

Development and implementation of a general topography simulator
Accurate and fast using several sophisticated techniques such as

Narrow banding
Fast marching method

Capable of handling different processes such as
Optimizing the features causing nonplanar passivation in

planar nitride surface including sufficient sidewall and bottom coverages
sufficient planarization margin for TEOS
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