Carrier Recombination in Semiconductor Lasers: Beyond the ABC

J. Hader, J.V. Moloney

Nonlinear Control Strategies, Inc., Tucson, AZ (nlcstr.com) and Optical Sciences Center, University of Arizona

A. Thränhardt, S.W. Koch

Dept. Physics, Philipps Universität Marburg, Germany

L. Fan, M. Fallahi

Optical Sciences Center, University of Arizona

ABC's of Semiconductor Lasers

Problems with A, B, C - Parametrization:

. parameters only very roughly known and only for special cases;

depend on well- and barrier-materials, layer widths, temperatures, densities...

. simple density-dependence far from reality

ABC's of Semiconductor Lasers

Semiconductor Bloch equations (SBE):

$$\frac{d}{dt}P_{\mathbf{k}}^{ji} = \frac{1}{i\hbar} \left\{ \sum_{i',j'} \left[\mathcal{E}_{jj',\mathbf{k}}^{h} \delta_{ii'} + \mathcal{E}_{ii',\mathbf{k}}^{e} \delta_{jj'} \right] P_{\mathbf{k}}^{j'i'} + \left[1 - f_{\mathbf{k}}^{e,i} - f_{\mathbf{k}}^{h,j} \right] \mathcal{U}_{i,j,\mathbf{k}} \right\} + \frac{d}{dt} P_{\mathbf{k}}^{ji} \Big|_{corr}$$

$$\mathcal{E}_{ii',\mathbf{k}}^{e} = \varepsilon_{\mathbf{k}}^{e,i} \delta_{ii'} - \sum_{i'',\mathbf{q}} V_{\mathbf{k}-\mathbf{q}}^{ii''i''} f_{\mathbf{q}}^{e,i''} \qquad \mathcal{U}_{ij,\mathbf{k}} = -\mu_{ij,\mathbf{k}} E(t) - \sum_{i',j',\mathbf{q}} V_{\mathbf{k}-\mathbf{q}}^{ij'ji'} P_{\mathbf{q}}^{j'i'}$$

<u>Quantum-Boltzmann scattering in 2. Born-Markov approximation to determine dephasing of *P*, <u>lineshape of $\alpha(\omega)$:</u></u>

$$\frac{\hbar}{\pi} \frac{d}{dt} P_{\mathbf{k}}^{ji} \bigg|_{ee} = \sum_{n,\mathbf{k}',\mathbf{q}} 2 \left| \tilde{V}_{\mathbf{q}}^{inni} \right|^2 \mathcal{D} \left(\varepsilon_{\mathbf{k}'+\mathbf{q}}^{e,i} - \varepsilon_{\mathbf{k}}^{e,i} - \varepsilon_{\mathbf{k}}^n + \varepsilon_{\mathbf{k}'-\mathbf{q}}^n \right) \times \left[f_{\mathbf{k}}^{e,i} f_{\mathbf{k}'}^n \left(1 - f_{\mathbf{k}'-\mathbf{q}}^n \right) + \left(1 - f_{\mathbf{k}}^{e,i} \right) \left(1 - f_{\mathbf{k}'}^n \right) f_{\mathbf{k}'-\mathbf{q}}^n \right] P_{\mathbf{k}+\mathbf{q}}^{ji} + \dots$$

Gain:

With explicit treatment of scattering :

. correct amplitudes, spectral positions, shifts. no unphysical absorption

. correct density dependence for SE and gain

Without explicit treatment of scattering but lineshape functions :

- . wrong amplitudes, spectral positions, shifts
- . unphysical absorption
- . drastically wrong density dependence for gain and SE

Spontaneous Emission; KMS vs. SLE: $J_{SE} = eR_{SE} = e \int d\omega S(\omega)$

Kubo Martin Schwinger Relation (KMS) between absorption/gain, $\alpha(\omega)$, and SE, $S(\omega)$:

$$S(\omega) = -\frac{1}{\hbar} \left(\frac{\epsilon_b \omega}{\pi c}\right)^2 \alpha(\omega) \left[e^{\frac{\hbar \omega - \mu}{k_B T}} - 1\right]^{-1}$$

Semiconductor Luminescence Equations (SLE):

- . Equations of motion for photon assisted polarizations: <b+v+c>
- . Similar to SBE, I.e. equations of motion for polarizations: <v+c>, <c+v>
- . Scattering in 2. Born-Markov approximation

Spontaneous Emission; KMS vs. SLE:

Auger Recombination:

Quantum-Boltzmann scattering in 2. Born-Markov approximation to determine Auger transitions

$$\frac{d f_{k}^{i,s}}{dt} = \frac{2\pi}{\hbar} \sum_{\mathbf{k}',\mathbf{q},s'} \mathcal{R}e \left\{ \sum_{j_{1},j_{2},j_{3}} \left(\left| \tilde{V}_{q}^{i} \right|^{s_{3}j_{1}j_{2}} \right|^{2} - \tilde{V}_{q}^{i} \right|^{s_{3}j_{1}j_{2}} \sum_{j_{2},j_{3}}^{j_{1}j_{2}j_{3}i} \sum_{|\mathbf{k}'-\mathbf{q}|+\mathbf{k}|} \right) \times \\\mathcal{D}\left(-\varepsilon_{k}^{i,s} - \varepsilon_{|\mathbf{k}'-\mathbf{q}|}^{j_{1},s'} - \varepsilon_{|\mathbf{q}-\mathbf{k}|}^{j_{2},-s} + \varepsilon_{k'}^{j_{3},s'} \right) \times \\ \begin{bmatrix} \text{Impact} \\ \text{Ionization} \\ \text{Auger} \\ \text{Recombination} \\ \end{bmatrix} \left(1 - f_{k'}^{j_{3},s'} \right) f_{|\mathbf{q}-\mathbf{k}|}^{j_{2},-s} f_{|\mathbf{k}'-\mathbf{q}|}^{j_{1},s'} f_{k}^{i,s} \right] + \dots \\ \end{bmatrix}$$

11

Theory-Experiment Comparison

Theoretical Procedure:

- . calculate gain for various densities
- . search for density that overcomes intrinsic losses (mirror losses) = threshold density . calculate spontaneous emission and Auger recombination for this density

. put on top of experimental result without adjustment

Theory-Experiment Comparison

www.nlcstr.com

Results

How good are the ABC's?:

. Error of more than two already at transparency for B- and C-laws.

Results

. J_{aug}

How good are the ABC's?:

6.4nm wide GaInNAs-well, lasing at 1300nm 4 x 2.5nm InGaAsP wells, 1500nm 6.4nm GaInNAs well, 1300nm microscopic B(N=0.1) x N² [10⁻²⁴A cm²] J_{spont}N⁻¹ [10⁻¹²A] ⊒ ₀₀ 10 10² J_{aug}N⁻² 200K 10² 10² 300K 10¹ O: threshold 400 400 300K 200K 10 10 0.1 0.1 density $\begin{bmatrix} 1\\ 10^{12}/\text{cm}^2 \end{bmatrix}$ 10 density [10¹²/cm²]

increases far less than cubic with N;

sometimes even less than quadratic

Closed-Loop Laser Design

Predicting Input-Output Characteristics Using Basic Structural Information

J. Hader, et al. Optics Letters, in print.

Experimental Input:

- internal loss α int
- Iow excitation PL

Step 1:

 calculate PL using fit parameter free SLE's; compare to measured PL

> inhomogenous broadening and actual structural compositions

<u>Step 2:</u>

 calculate gain using fit parameter free SBE's and apply inhomogeneous broadening; look up density for which gain compensates α_{thr}

threshold density, N_{thr}

Nonlinear Control Strategies Inc.

Closed-Loop Laser Design

Predicting Input-Output Characteristics Using Basic Structural Information

<u>Step 3:</u>

use fit parameter free SLE's and Auger model to calculate spontaneous emission- and Auger-losses at threshold, $J_{se}(N_{thr})$, $J_{aug}(N_{thr})$, threshold current, $J_{SE}(N_{thr})+J_{aug}(N_{thr})$ C N³ ΒN² 275K 100 300K 325K uger loss current [mA] 10 N_{Thr}(300K) . N_{Thr}(275K) N_{Thr}(325K) 2 3 5 density [10¹²cm⁻²]

Closed-Loop Laser Design

Predicting Input-Output Characteristics Using Basic Structural Information

Step 4, Comparison to Experiment:

Assumptions:

- slope efficiency = $\alpha_{out} / \alpha_{thr}$
- internal efficiency = 100%
- homogeneous mode under pumped area

No adjustments of any parameters.

- No free parameters.
- True predictions for threshold and temperature dependence.

NOTE:

When using adjustable parameters like an Auger-constant, C, and its temperature dependence, a reasonable **FIT** to the threshold and its temperature dependence can always be obtained.

Summary

Spontaneous Emission:

- B N²-assumption leads to an error of several orders of magnitude even if low-density B is known
- above threshold N²-assumption completely breaks down
- here, only linear increase with density due to phase space filling
- Numerically expensive SLE's have to be used especially for densities near transparency

Auger Recombination:

- C N ³-assumption leads to an error of up to one order of magnitude even if lowdensity C is known
- measured and/or calculated literature values for C vary by 1-2 orders of magnitude for similar systems
- C strongly temperature- and density dependent
- N_{thr} 25% wrong Auger-current wrong by factor 2
- J. Hader, et al., IEEE J. Quantum Electron. 41, 1217 (2005)
- J. Hader, et al., Appl. Phys. Lett. 87, 201112 (2005)
- J. Hader, et al., Optics Lett., in print.

Dephasing Time Approximation:

threshold density overestimated by about factor of 2

 \Rightarrow up to one order of magnitude error in loss-currents

6.4nm wide GalnNAs-well, lasing at 1300nm

Shortcomings of Simpler Approaches

Bulk Approximation for Barrier States:

subband approximation:

- . similar density of states as bulk
- . seems to be good for periodic MQW systems
- . negelcts coupling between well-unit-cells
- . neglects formation of subbands and mixing of wavefunction-character

bulk approximation:

. good for total barrier widths of more than about ten excitonic Bohr radii

Shortcomings of Simpler Approaches

Bulk Approximation for Barrier States:

- . unphysical resonances in width dependence
- . wrong by factor of about 2

