

The Impact of Nonequilibrium Gain in a Spectral Laser Diode Model

P.J. Bream¹, J.J. Lim¹, S. Bull¹, A.V. Andrianov², S. Sujecki¹ and E.C. Larkins¹

¹ School of Electrical and Electronic Engineering The University of Nottingham; Nottingham NG7 2RD; U.K.

² A.F. Ioffe Physical Technical Institute of the Russian Academy of Science, 26 Politechnicheskay, St. Petersburg, 194021 Russia

Email: Eric.Larkins@nottingham.ac.uk

The Impact of Nonequilibrium Gain in a Spectral Laser Diode Model

The authors gratefully acknowledge the EC-IST projects **WWW.BRIGHT.EU** (IST-511722) and **FAST ACCESS** (IST-004772).

P. J. Bream gratefully acknowledges the support of the **Engineering and Physical Sciences Research Council**, U.K.

P.J. Bream, J.J. Lim, S. Bull, A.V. Andrianov, S. Sujecki and E.C. Larkins

Presentation outline

- Introduction
- . 2.5D spectral laser model
- . Dynamic gain model
- Simulation Results
- . Experimental Results

. Conclusion

P.J. Bream, J.J. Lim, S. Bull, A.V. Andrianov, S. Sujecki and E.C. Larkins

- Spectral performance of high power laser diodes just as important as power and beam quality
- Growing interest in exploiting or suppressing optical nonlinearities, which appear at high optical power densities and operating frequencies
- Design of devices with superior spectral or nonlinear performance requires clear understanding of optical nonlinearities
 - Laser diode models should include optical, electrical and thermal processes
 - → Spontaneous emission coupling into modes should also be considered

2.5D spectral laser model

Spectral Laser Model: Flow Diagram and Key Features

P.J. Bream, J.J. Lim, S. Bull, A.V. Andrianov, S. Sujecki and E.C. Larkins

2.5D spectral laser model

Spectral Laser Model: Optical and Electrical Solvers

Optical Solver

- Wide-angle, finite-difference beam propagation method (WA-FD-BPM)
- 3D simulation reduced to 2D (x,z) using the effective index method
- Extended to multiple wavelengths
- Spontaneous emission (SE) coupled to each wavelength

m A 2D (x y) bipola

- 2D (x,y) bipolar model using Newton's method to simultaneously solve:
 - Poisson's equation
 - Current continuity equations
 - QW capture/escape equations
- Non-equilibrium gain model

P.J. Bream, J.J. Lim, S. Bull, A.V. Andrianov, S. Sujecki and E.C. Larkins

Dynamic gain model

Non-Equilibrium Gain Model: Overview and Key Features

• Calculates dynamic changes to the carrier energy distributions in the QW subbands under electrical and/or optical excitation conditions

- a Carrier capture/escape (carrier-carrier scattering)
- **b Intrasubband & intersubband energy relaxation** (carrier-carrier, carrier-phonon scattering)
- c Interband energy relaxation (electron-hole scattering)
- d Interband nonradiative generation/recombination (SRH, Auger, etc.)
- e Interband radiative generation/recombination (spontaneous & stimulated emission/absorption)

Model too numerically intensive to include directly in the spectral model

⇒ Steady-state non-equilibrium gain and spontaneous emission spectra are parameterised (n_{2D}, p_{2D}, λ, S) and stored in a software database

- Carrier distributions calculated for the range of CW electrical and optical excitation conditions required by spectral laser model
- Fermi-Dirac distributions fit to carrier distribution in each subband
 - > Subband carrier density and total subband energy conserved
 - > Gain and spontaneous emission spectra include only carrier heating (CH)
- Spectral hole burning (SHB) introduced phenomenologically as function of total photon density, S_{tot}

$$g_{SHB}(\lambda) = \frac{g(\lambda)}{1 + \varepsilon S_{tot}}$$

where ε is the gain compression coefficient ($\varepsilon = 7x10^{-23}m^3$)

P.J. Bream, J.J. Lim, S. Bull, A.V. Andrianov, S. Sujecki and E.C. Larkins

Simulations were performed for a 975nm tapered laser diode

- ~9nm InGaAs/InGaAsP SQW
- > Ridge waveguide length 0.5mm
- > Tapered section length 1.5mm
- > 3 bias voltages considered: 1.41V, 1.47V and 1.53V

L-I characteristics and emission spectra

Equilibrium and nonequilibrium L-I curves (left) very similar

 \succ η_{ext} decreases slightly with bias for nonequilibrium case

Equilibrium and nonequilibrium beam spectra (right) also very similar

- > The intensities are similar (optical gain/losses are the same)
- > Increasing carrier density (spectral hole burning) causes blue shift

⇒ This blue shift may have implications for measuring the active region temperature!

P.J. Bream, J.J. Lim, S. Bull, A.V. Andrianov, S. Sujecki and E.C. Larkins

Simulation results

Photon density and subband carrier distributions

- Higher photon density leads to spatial hole burning
- Details of subband distributions extracted from dynamic gain model results

Simulated carrier distribution at centre of front facet (x=0, z=2mm)

- Total hole density (left) increases with bias because of SHB
- Nonequilibrium hole density larger due to CH
- All subband distribution temperatures (right) increase with bias (CH)
- All valence subband temperatures very close to HH1 temperature

P.J. Bream, J.J. Lim, S. Bull, A.V. Andrianov, S. Sujecki and E.C. Larkins

Simulated spontaneous emission spectra at centre of front facet

- Spontaneous emission at ~970 nm increases with bias due to SHB
- Increasing carrier density with bias leads to stronger CB1-LH1 transition
- The CB1-LH1 transition increases faster with the nonequilibrium gain model
- Carrier heating increases the hole density in LH1

P.J. Bream, J.J. Lim, S. Bull, A.V. Andrianov, S. Sujecki and E.C. Larkins

Experimental results

Intracavity µ-EL spectroscopy measurements

- Made through windowed backside contacts
- Same epitaxy as simulated device, but 4° tapered laser
- Uncalibrated spectra corrected for spectral response of Ge detector

Key Observations

- Emission spikes above threshold
 attributed to stimulated emission
- Carrier density increase with bias attributed to spectral hole burning
- Increasing CB1-LH1 transition strength attributed primarily to carrier heating

⇒ Good qualitative agreement with simulation results

Conclusions

- Carrier heating alone does not significantly affect the lasing spectrum, but increases the spontaneous emission from excited state transitions
- Spectral hole burning leads to increasing carrier density with bias even though gain of lasing modes is pinned!
- The increasing carrier density (due to SHB) causes a blue shift in the emission *and may affect active region temperature measurements*
- Experimentally measured intracavity spontaneous emission spectra are in good qualitative agreement with the simulated results
- Intracavity EL spectroscopy is useful for validating dynamic gain calculations